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mechanotransduction
Donald E Ingber

The current focus of medicine on molecular genetics ignores
the physical basis of disease even though many of the
problems that lead to pain and morbidity, and bring patients
to the doctor’s office, result from changes in tissue structure
or mechanics. The main goal of this article is therefore to
help integrate mechanics into our understanding of the
molecular basis of disease. This article first reviews the key
roles that physical forces, extracellular matrix and cell
structure play in the control of normal development, as well
as in the maintenance of tissue form and function. Recent
insights into cellular mechanotransduction — the molecular
mechanism by which cells sense and respond to mechanical
stress — also are described. Re-evaluation of human
pathophysiology in this context reveals that a wide range
of diseases included within virtually all fields of medicine
and surgery share a common feature: their etiology or
clinical presentation results from abnormal mechanotrans-
duction. This process may be altered by changes in cell
mechanics, variations in extracellular matrix structure, or by
deregulation of the molecular mechanisms by which cells
sense mechanical signals and convert them into a chemical
or electrical response. Molecules that mediate mechano-
transduction, including extracellular matrix molecules,
transmembrane integrin receptors, cytoskeletal structures
and associated signal transduction components, may there-
fore represent targets for therapeutic intervention in a
variety of diseases. Insights into the mechanical basis of
tissue regulation also may lead to development of improved
medical devices, engineered tissues, and biologically-
inspired materials for tissue repair and reconstruction.
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& Mechanobiology and diseases of

Introduction

The molecular biology revolution has led to advances
in knowledge and new technologies that are revolu-
tionizing the way in which clinical medicine is
practiced. Completion of the Human Genome Pro-
ject, massively parallel gene and protein profiling
techniques, and powerful bioinformatics tools are just
a few examples. Yet there is a huge disconnect
between these ‘genome-age’ technologies and the
reality of how diseases manifest themselves. From
the time the first human looked, listened and felt for
what is wrong with a sick friend, caregivers have
recognized the undeniable physical basis of disease.
The thrill in the chest of a patient with aortic valve
disease, bounding pulse in the hypertensive and
wheeze of the patient with emphysema all ignite
reflexive clinical responses in the mind of the skilled
physician, and sometimes even lead to immediate
diagnoses.

But in the current genome euphoria, there appears
to be no place for ‘physicality’. This is especially
worrisome given that abnormal cell and tissue
responses to mechanical stress contribute to the
etiology and clinical presentation of many important
diseases, including asthma, osteoporosis, athero-
sclerosis, diabetes, stroke and heart failure. There is
also a strong mechanical basis for many generalized
medical disabilities, such as lower back pain and
irritable bowel syndrome, which are responsible for a
major share of healthcare costs world-wide. In fact,
surgeons sometimes even use mechanical forces as
therapeutics, such as when traction forces are used to
accelerate bone healing. However, what is missing is
how these physical interventions could influence cell
and tissue function, or how altered cell or tissue
mechanics may contribute to disease development.

In this article, I first review the fundamental role
that physical forces and changes in tissue mechanics
play in normal development and physiology. I then
describe recent advances in our understanding of
cellular mechanotransduction, the molecular mech-
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Abbreviations and acronyms

ECM extracellular matrix
ICAM intercellualr adhesion molecule

PDGF platelet-derived growth factor
RGD argine-glycine-aspartate
3D three-dimensional

anism by which cells sense and respond to mechanical
signals. Finally, I explain how the clinical manifesta-
tions of many ostensibly unrelated diseases similarly
result from abnormal mechanotransduction, and how
this insight may lead to new avenues for therapeutic
intervention.

Mechanobiology

In biology and medicine, we tend to focus on the
importance of genes and chemical factors for control
of tissue physiology and the development of disease,
whereas we commonly ignore physical factors. This is
interesting because it was common knowledge at the
turn of the last century that mechanical forces are
critical regulators in biology (1). Wolff’s law describ-
ing that bone remodels along lines of stress was
published in 1892 (2). However, the advent of more
reductionist approaches in the basic sciences, and the
demonstration of their power to advance under-
standing of the molecular basis of disease, led to a
loss of interest in mechanics.

Although it has received much less attention than
the genomics revolution, there has been a renaissance
in the field of mechanobiology over the past two
decades. Physiologists and clinicians now recognize
the importance of mechanical forces for the develop-
ment and function of the heart and lung, the growth
of skin and muscle, the maintenance of cartilage and
bone, and the etiology of many debilitating diseases.
Exploration of basic mechanisms of sensation and
autonomic control, including hearing, balance, touch,
and peristalsis, also has demanded explanation in
mechanical terms. At the same time, biologists have
come to recognize that mechanical forces serve as
important regulators at the cell and molecular levels,
and that they are equally potent as chemical cues. For
example, cell-generated tensional forces have been
shown to regulate diverse functions, ranging from
chromosome movements and cell proliferation to
tissue morphogenesis, in addition to cell contractility
and motility (3-5).

To explain mechanoregulation, we must take into
account that living organisms, such as man, are
constructed from tiers of systems within systems
within systems (4,6,7). Our arms and legs, for
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Key messages

* Mechanical forces are critical regulators of
cellular biochemistry and gene expression as
well as tissue development.

* Mechanotransduction — the process by which
cells sense and respond to mechanical signals —
is mediated by extracellular matrix, transmem-
brane integrin receptors, cytoskeletal structures
and associated signaling molecules.

* Many ostensibly unrelated diseases share the
common feature that their etiology or clinical
presentation results from abnormal mechano-
transduction. Mechanotransduction may be
altered through changes in cell mechanics,
extracellular matrix structure or by deregulation
of the molecular mechanisms by which cells
sense mechanical signals or convert them into a
chemical response.

* Molecules that mediate mechanotransduction
may represent future targets for therapeutic
intervention in a variety of diseases. Insights
into the mechanical basis of tissue regulation
also may lead to development of improved
medical devices, engineered tissues, and biomi-
metic materials for tissue repair and reconstruc-
tion.

example, are composed of several organs (e.g., bone,
muscle) that are constructed by combining various
tissues (e.g., bone, muscle, connective tissue, vascular
endothelium, nerve). These tissues, in turn, are
composed of groups of living cells held together by
an extracellular matrix (ECM) comprised of a net-
work of collagens, glycoproteins, and proteoglycans.
Each cell contains a surface membrane, intracellular
organelles, a nucleus, and a filamentous cytoskeleton
that connects all these elements and is permeated by a
viscous cytosol. Each of these subcellular components
is, in turn, composed of clusters of different mol-
ecules. In other words, our bodies are complex
hierarchical structures, and hence mechanical defor-
mation of whole tissues results in coordinated
structural rearrangements on many different size
scales.

To understand how individual cells experience
mechanical forces, we therefore must first identify
the path by which these stresses are transmitted
through tissues and across the cell surface. As in any
three-dimensional (3D) structure, mechanical loads
will be transmitted across structural elements that are
physically interconnected. Thus, forces that are
applied to the entire organism (e.g., due to gravity
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DISEASES OF MECHANOTRANSDUCTION 3

or movement) or to individual tissues would be
distributed to individual cells via their adhesions to
the ECM support scaffolds (basement membranes,
interstitial matrix, cartilage, bone) that link cells and
tissues throughout the body. This can be seen in
specialized mechanosensory organs that recognize
and respond to physical stimuli. In the vestibular
apparatus, for example, the otoliths (dense calcareous
crystals) mediate sensation of linear acceleration due
to gravity by deforming a specialized bilaminar ECM.
Local distortion of this ECM activates sensory
neurons within adjacent hair cells by transferring
mechanical forces across the cell surface and thereby
inducing bending of cytoskeletal stereocilia that
extend from the cell surface (8). ECM similarly
mediates mechanical energy transfer to sensory cells
within muscle stretch receptors (9).

The mechanical properties of the ECM also
contribute significantly to the cellular mechanotrans-
duction response. For instance, the high flexibility of
the ECM of Pacinian corpuscle mechanoreceptor cells
in skin ensures that rapid deformations will be sensed,
whereas sustained stresses will dissipate before they
reach the cell (10). This mechanism is used to filter out
sustained signals due to continuous pressure or touch
(e.g., when we sit and write on the computer for
extend periods of time) — a common form of
receptor adaptation. If the ECM is less flexible, then
stresses will be transmitted to and through the cell,
only to be dissipated through movements in the
cytoskeleton, as observed in stereocilia in hair cells.

ECM plays a similar role in mechanoregulation in
all solid tissues. These molecular scaffolds distribute
stresses throughout tissues and focus these forces on
sites of cell.ECM adhesion. Cells adhere to ECM
through binding of specific cell surface receptors. The
most ubiquitous and well characterized class of ECM
receptors are known as ‘integrins’. Over 20 different
types of these dimeric protein receptors exist; their
binding specificity (e.g., for collagen versus fibronec-
tin) depends on the specific pairing combination of
interacting o and B subunits (11, 12). The external
portion of these transmembrane receptors binds to
specific peptide sequences (e.g., RGD) in ECM mol-
ecules, while their intracellular domains physically
associate with actin-associated proteins and thereby,
form a molecular bridge between the ECM and the
cytoskeleton. Integrins are not evenly distributed in
the membrane, rather they cluster together within
specialized anchoring complexes known as ‘focal
adhesions’ (13).

Importantly, integrins provide a preferred site for
mechanical signal transfer across the cell surface,
when compared with other types of transmembrane
receptors. This has been demonstrated directly by
applying mechanical forces to surface membrane
receptors of cultured cells (14-17). Cell surface
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integrins that link to the internal cytoskeleton provide
a much greater degree of mechanical coupling across
the cell surface as measured by an increased strength-
ening (stiffening) response when compared with
transmembrane growth factor receptors, histocom-
patibility antigens, or metabolic receptors.

Thus, integrins appear to function as cell surface
‘mechanoreceptors’ in that they are among the first
molecules to sense a mechanical stress applied at the
cell surface, and they transmit this signal across the
plasma membrane and to the cytoskeleton over a
specific molecular pathway. Cell-cell adhesion mol-
ecules, such as cadherins and selectins, may provide a
similar mechanical coupling function between the
cytoskeletons of neighboring cells (18-21). Interest-
ingly, even forces that produce generalized cell
distortion, such as apical fluid shear stresses in
endothelium, eventually distribute the stress through
the cytoskeleton and to integrins within the cell’s
basal focal adhesions, and to cell-cell adhesion mol-
ecules at the lateral cell borders (22, 23).

Force-induced changes in cell structure and
mechanics

To understand the physiological mechanism by which
cells respond to mechanical stress, we must first
consider how forces impact the cell once they are
transmitted across transmembrane adhesion recep-
tors. When most of the readers of this article went to
medical school, they learned that cells are composed
of a viscous cytosol surrounded by a membrane, with
a nucleus in its center. With this view of cell
architecture, it is difficult to understand how mech-
anical forces could modulate intracellular structure or
biochemistry. Over the past quarter century, how-
ever, our view of cell structure has changed comple-
tely. We now recognize that living cells contain a
cytoskeleton. This is an internal molecular frame-
work or lattice composed of three different types of
molecular filaments (microfilaments, microtubules
and intermediate filaments) that provides shape
stability to the cell (24). However, the cytoskeleton
is not simply a passive gel. All cells generate tensional
forces through actomyosin filament sliding in their
cytoskeleton. These tensional forces are resisted and
balanced by external adhesions to ECM and neigh-
boring cells, and by other molecular filaments (e.g.,
microtubules) that locally resist inward-directed
tensional forces inside the cytoskeleton.

This type of force balance is a hallmark of an
architectural system known as ‘tensegrity’, and
computational models based on tensegrity theory
can predict complex mechanical behaviors of mam-
malian cells (7,24-26). Thus, the cell does not
respond to mechanical stress like a ‘balloon filled
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4 INGBER

with molasses or jello’. Instead, the viscoelastic
behavior of living cells results from collective mech-
anical interactions within the tensed molecular
cytoskeleton. Cytoskeletal forces are also harnessed
to transport organelles (e.g., mitochondria, synaptic
vesicles) in the cytoplasm, to move chromosomes
during mitosis, and as long recognized in muscle, to
generate tensional forces that are important for cell
contractility as well as movement. The effects of
applied stresses on cell shape and mechanics will
therefore depend on the material properties of the
cytoskeletal filaments, their organization (architec-
ture), and the level of isometric tension or ‘prestress’
in the cell, much like the mechanical responsiveness of
whole muscle is governed by its structural organiza-
tion and by its contractile tone. Because individual
cells (both muscle and non-muscle) apply tractional
forces on their adhesions, cultured cells spread and
flatten on rigid ECM substrates, whereas they retract
and round on flexible ECMs.

Mechanical determinants of cell and
developmental control

What may be most surprising is that changes in
microscale forces that alter the cytoskeletal force
balance and modulate cell shape also control complex
cell behaviors that are critical for development and
tissue homeostasis. Cell growth, differentiation,
polarity, motility, contractility and programmed cell
death, all can be influenced by physical distortion of
cells through their ECM adhesions. For instance,
chondrocytes, hepatocytes, mammary epithelium,
retinal epithelium, capillary endothelium, and fibro-
blasts can be switched from growth to differentiation
in the presence of soluble mitogens by decreasing the
stiffness or adhesivity of the ECM, and thereby
promoting cell retraction and rounding (27-34).
Adherent endothelial cells can be switched from
growth to apoptosis by more fully restricting cell
spreading (35). Varying the mechanical compliance
(flexibility) of the ECM also influences the rate of cell
migration (36) and the direction of motility can be
affected by geometric cues from the ECM (37). Direct
application of tensional forces to cultured endothelial
cells similarly promotes capillary outgrowth in 3D
collagen gels (38) and nerve cells respond to tensional
forces exerted on their surfaces by extending nerve
processes in the direction of the applied stress (39).
Changing vascular smooth muscle cell shape through
modulation of cell.ECM adhesion or alteration of
ECM compliance also regulates its contractile
response to vasoagonists, such as endothelin-1 (40,
41). In fact, individual cultured vascular smooth
muscle cells display a bell-shaped, force-length
relationship (40) that is highly reminiscent of the
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Starling curve exhibited by the whole heart. Cell
shape-dependent changes in the sensitivity of the
contractile machinery may ensure ‘compliance match-
ing’ in muscle cells of the gastrointestinal tract,
genitourinary system, pulmonary airways, blood
vessels and heart, as well as in epithelial and
connective tissues, so that the level of tension exerted
by the cell precisely balances the mechanical stress
transmitted through the surrounding ECM in
response to tissue distortion.

In summary, these studies have revealed that the
physicality of the ECM substrate and degree of cell
distortion govern cell behavior regardless of the
presence of hormones, cytokines or other soluble
regulatory factors. Local alterations in ECM structure
that influence cell shape and mechanics, such as
thinning of basement membrane produced by
increased ECM turnover (e.g., metalloproteinase
activities), also appear to drive regional changes in
cell growth and motility during tissue development
(25,42). Lung branching morphogenesis in the
embryo can be selectively inhibited or accelerated by
decreasing or increasing cytoskeletal tension, respec-
tively, using pharmacological agents (43). Regional
changes in ECM structure and associated changes in
cytoskeletal mechanics similarly contribute to control
of angiogenesis that is required for wound healing as
well as tumor progression (44). In fact, cell-generated
tensional forces appear to play a central role in the
development of virtually all living tissues and organs
(24, 25,42), even in neural tissues, such as retina (45)
and brain (46).

Various in vitro and in vivo studies confirm that
mechanical forces directly regulate the shape and
function of essentially all cell types (5). Individual
bone cells increase deposition of bone ECM when
exposed to mechanical stresses with high frequency
and low strain in vitro, just as they do within whole
bone (47), and differences in mechanical loading
conditions can direct bone versus cartilage formation
(48). Chondrocytes respond to compressive loading
by altering production of proteoglycans that comprise
cartilage matrix (49). Skeletal muscle cells increase
their mass, upregulate expression of muscle-specific
proteins and even organize into muscle fascicles in
vitro when stretched with physiologically relevant
load cycles (50, 51); heart cells increase secretion of
atrial natriuretic factor (52). Skin epithelium, bone
cells, fibroblasts, and embryonic heart muscle cells all
increase their growth rates when they experience
mechanical strain (53-56), whereas stretch induces
differentiation in periodontal ligament cells (57).
Endothelium sense fluid shear stresses and respond
by altering their expression of proteins that are
involved in lymphocyte binding (e.g., ICAM), tissue
remodeling (e.g., PDGF) and handling oxidant stress,
and some of these effects are mediated through
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DISEASES OF MECHANOTRANSDUCTION S

activation of specific ‘shear stress-response elements’
in certain gene promoters (58, 59). Kidney epithelial
cells respond to levels of fluid shear similar to those
produced by urine flow in collecting ducts by
increasing calcium influx (60, 61). Changes in gene
expression and growth of bladder smooth muscle cells
that are triggered by outlet obstruction appear to
result from mechanical stretch secondary to over-
filling of the bladder (62). Glomerular filtration rate is
similarly controlled by alterations in vasomotor tone
of preglomerular, glomerular, and postglomerular
microvessels, as well as associated changes in mesan-
gial cell contractility (63). During pregnancy, the
onset of labor is triggered by distention of the uterus
imposed by the growing fetus (64), and pulmonary
epithelial cells increase secretion of surfactant when
stretched in vitro (65), just as they do in a newborn
when it takes its first breath.

Cellular mechanotransduction

But how do mechanical forces influence cellular
biochemistry and gene expression so as to produce
these varied effects on cell and tissue behavior? This
mechanism is difficult to envision because it does not
involve a classic ‘stimulus-response’ coupling as used
by soluble hormones or secretagogues. In the case of
hormonal stimulation, no molecular signal is present
prior to stimulation and the relevant receptor binding
sites are unoccupied. Then when the hormone
stimulus is provided, it binds to its receptor and
initiates an intracellular signaling response. In con-
trast, because cell shape is determined through a
balance of mechanical forces (24-26), any external
mechanical stimulus that impinges on an adherent cell
is imposed on a pre-existing force balance, much like
pulling an arrow back against a tensed bow-string.
This is important because the pre-existing tensile
stress (prestress) or tone in the cell can at times govern
the ‘response’ to the mechanical ‘stimulus’ (66, 67).

In the case of adherent cells, forces applied at the
macroscale also will result in changes in ECM and
cytoskeletal mechanics on the microscale. For exam-
ple, the vessel wall decreases its mechanical compli-
ance (i.e., becomes more rigid) when it is physically
distended due to increased blood pressure. Osmotic
forces similarly tense and stiffen interstitial matrix,
for example, in cerebral edema or following injury to
the liver; pressure overload has a similar effect in the
heart. These changes in ECM mechanics will not
transfer force equally to all points on the surface of
neighboring adherent cells. Rather, a tug on the ECM
will be felt by the cell through its focal adhesions and
hence, through its transmembrane integrin receptors
that link to the cytoskeleton.

When integrins on the surface membrane of

© 2003 Taylor & Francis. ISSN 0785-3890

cultured cells are mechanically stressed, the cell
responds by increasing recruitment of focal adhesion
(cytoskeletal linker) proteins and mechanically
strengthening itself against additional stress (14—
17, 68=70). When the same stress is applied to other
transmembrane receptors that do not mediate cell
adhesion, there is very little response. Because
integrins preferentially mediate mechanical signal
transfer across the cell surface, the molecular compo-
nents of the cytoskeletal scaffolds that connect to
integrins within the focal adhesion will experience
increased mechanical stress whereas soluble compo-
nents in the nearby cytosol will not. For example,
when large-scale deforming forces are applied to
integrins, cytoskeletal filaments and linked intra-
nuclear structures can be seen to realign along the
applied tension field lines (71, 72). Application of fluid
shear stress to the apical membrane of vascular
endothelium similarly results in distortion of cyto-
skeletal filaments throughout the cell (73) as well as
funneling of stress along this load-bearing network in
the cytoplasm all the way to the cell’s basal ECM
adhesions (22,23). Kidney epithelium senses shear
stress through deformation of the primary cilium (60,
61). This is a single, specialized, cytoskeletal process
that extends vertically from the apical cell surface and
functions like a long lever arm for the whole
cytoskeleton, much like stereocilia in hair cells of
the inner ear.

If the cytoskeletal filaments and associated regula-
tory molecules distort without breaking when integ-
rins or specialized cytoskeletal extensions (e.g.,
stereocilia, primary cilia) are stressed, then some or
all of the molecules that comprise these structures
must similarly change shape. When the shape of a
molecule is altered, its biophysical properties (ther-
modynamics, kinetics) change, and hence biochem-
istry (e.g., chemical reaction rates) will be altered
(4,74). This is important because many of the
enzymes and substrates that mediate cellular metab-
olism (e.g., protein synthesis, glycolysis, RNA pro-
cessing, DNA replication) are physically immobilized
on the cytoskeleton and nuclear matrix (nucleoskele-
ton) (75, 76). In particular, many signal transduction
molecules are oriented on the cytoskeletal backbone
of the focal adhesion complex at the site of integrin
binding; these include mechanically-gated ion chan-
nels, protein kinases (e.g., FAK, src), small GTPases,
heterotrimeric G proteins, inositol lipid kinases, and
certain growth factor receptors (77, 78).

Experiments confirm that local changes in bio-
chemical signal transduction are produced when
external forces are applied to integrins. The increased
recruitment of focal adhesion proteins and associated
cytoskeletal strengthening response that result when
integrins are stressed (14-17,79) are mediated by
local activation of the small GTPase Rho and the
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6 INGBER

protein tyrosine kinase, c-src (69, 70, 79). Mechanical
stress application to integrins also stimulates rapid
(within 10 msec) calcium influx in the neuromuscular
synapse (due to rapid muscle twitching) (80), recruits
the protein synthetic machinery to the site of force
application (81), and activates cAMP signaling within
the focal adhesion which eventually leads to stress-
induced changes in gene transcription (82). Stress
application through integrins induces endothelin-1
gene expression in endothelial cells and this response
can be prevented by dissipating cytoskeletal tension
(prestress) and hence, altering cell mechanics (66, 67).
Again, application of similar mechanical stresses to
other transmembrane receptors that are not adhesion
receptors fails to produce these responses. Other
signaling molecules that have been shown to be
activated by mechanical stress in an integrin-depen-
dent manner in various cell types include protein
tyrosine kinases (FAK, src), Shc, ERK1/2, protein
kinase C, PI-3-kinase, Akt, small GTPases (Rho,
Rac), heterotrimeric G proteins, paxillin, SREBP1,
hsp 27 and B-catenin (70, 79, 82-91).

Importantly, all cells also contain ‘stress-sensitive’
(mechanically-gated) ion channels that either increase
or decrease ion flux when their membranes are
mechanically stressed (92, 93). For example, specia-
lized mechanosensory ‘hair’ cells of the inner ear
detect sound through deflections of their stereocilia
that result in the opening of mechanosensitive cation
channels. Direction- and amplitude-dependent depo-
larizations caused by these deflections result in
induced currents that are relayed to nerve fibers
(94). The vestibular system relies on similar hair cells
at the base of the semicircular canals to sense three-
dimensional rotation through fluid flow; linear accel-
erations are sensed in the utricle and saccuole through
deflection of mineral deposits (otoconia) within a
specialized ECM (otolithic membrane) that again tugs
on stereocilia within adjacent hair cells (95). Stretch-
sensitive channels at the sensory neuron terminals
located under the epidermis and hair follicles also
mediate touch sensation, and related mechanisms are
used for pressure and stretch sensation as well as
proprioception (96, 97). However, even the function
of these specialized mechano-electrical transducers
appears to depend on their linkage to the cytoskeleton
and hence, indirectly on integrin coupling to the ECM
(93,98) which stabilizes the entire cytoskeleton
against shape distortion (24). For readers interested
in molecular mechanisms of mechanotransduction,
more detailed discussions can be found in various
recent reviews (4, 5,47, 85, 95, 98, 99).

In biology, we emphasize linear thinking and focus
on local molecular binding and assembly events. But if
all mechanosensing was carried out locally at the site
where stresses impinge on the surface membrane (e.g.,
in the focal adhesion), then cells would be continu-
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ously activated by subtle variations in ECM structure
within living tissues that are constantly exposed to
physiological stresses. Because forces applied locally
through integrins also produce coordinated deforma-
tion of molecular structures throughout the cyto-
skeleton and nucleus (71,72), mechanochemical
transduction could occur at distant or multiple sites
in the cell. In fact, application of mechanical stress to
integrins can produce the same focal adhesion
signaling response (e.g., production of cAMP) in
round versus spread cells (82), however, the cells that
are globally distorted proliferate whereas the round
cells undergo apoptosis (35). As described above, the
global shape of the cell dictates its behavior (e.g.,
growth versus differentiation or apoptosis), and these
effects are mediated through tension-dependent
changes in cytoskeletal structure and mechanics
(37,100, 101). Thus, cells appear to ‘think globally’
in that large-scale mechanical distortion of cell shape
and the cytoskeleton govern how the cell processes
and integrates locally-elicited signals (mechanical as
well as chemical) to produce a concerted behavioral
response (74).

Implications for clinical medicine

These new insights into mechanobiology suggest that
many ostensibly unrelated diseases may share a
common dependence on abnormal mechanotransduc-
tion for their development or clinical presentation.
Mechanotransduction may be altered through
changes in cell mechanics, ECM structure or by
deregulation of the molecular mechanisms by which
cells sense mechanical signals or convert them into a
chemical response. In fact, physicians in almost every
branch of medicine and surgery care for patients who
have ailments that may be viewed as diseases of
mechanotransduction, as discussed below and sum-
marized in Table 1.

Although the question of how cells determine their
shape and mechanics may seem esoteric, the reality is
that it has important clinical implications. For
example, leukocytes physically deform when they
pass through pulmonary capillary beds (102) and
inflammatory agents that increase cytoskeletal stiff-
ness in circulating neutrophils induce leukocyte
sequestration in the lung (103). The ability of tumor
cells to resist traumatic destruction in the vasculature,
and hence their ability to metastasize and survive in
distant capillary beds, depends on their flexibility
(104). The effectiveness of delivery of therapeutic
cytotoxic lymphocytes into tumor tissues similarly
can vary with their stiffness (105). Mechanical
stretching of kidney mesangial cells through integrins
due to glomerular hypertension represents a common
final pathway for glomerulosclerosis (106—-107), and

Anmnals of Medicine 35

MS. 149 Op. PGW {F2-PDF}
Produced: 24/07/2003 At: 14:39:23
Page: 6



DISEASES OF MECHANOTRANSDUCTION 7
Table 1. Diseases of mechanotransduction
Cardiology Angina (vasospasm) CT
Atherosclerosis ™
Atrial fibrillation M
Heart failure CTM?
Hypertension CTM?
Intimal hyperplasia CTM?
Valve disease T
Dermatology Scleroderma T
Gastroenterology Achalasia C
Irritable bowel syndrome C Mm?
Volvulus CT
Nephrology Diabetic nephropathy CTmM?
Glomerulosclerosis CTM?
Neurology Cerebral edema T
Facial tics C
Hydrocephalus TC?
Migraine CM?
Stroke CT
Stuttering C
Oncology Cancer CTmM?
Metastasis C
Opthalmology Glaucoma CTM?
Orthopedics Ankylosing spondylitis CT
Carpal tunnel syndrome CT
Chronic back pain CT
Dupytren’s contracture CT
Osteoporosis TM
Osteoarthritis T
Rheumatoid arthritis T
Pediatrics Collagenopathies T
Congenital deafness CTM
Mucopolysaccharidoses T
Musculodystrophies CTM
Osteochondroplasias CT
Polycystic kidney disease ™
Pulmonary hypertension of newborn CTM?
Pulmonary medicine ARDS CTM
Asthma CTM?
Emphysema T
Pulmonary fibrosis T
Pulmonary hypertension CTM?
Ventilator Injury CM
Reproductive medicine Pre-eclampsia CTM?
Sexual dysfunction (male & female) C M?
Urology Urinary frequency/incontinence C Mm?

A partial list of diseases that share the feature that their etiology or clinical presentation results from abnormal mechanotransduction.
The right column indicates whether the mechanical basis of the disease or condition is likely due to changes in cell mechanics (C),
alterations in tissue structure (T), or deregulation of mechanochemical conversion (M); “?’ indicates situations where deregulation of
mechanochemical conversion is likely but remains to be demonstrated.

altered cell mechanics contributes to the clinical
presentation of asthma and other pulmonary diseases
(108). Even some of the genetic causes of deafness
involve mutations in cytoskeletal proteins, such
myosin, espin and mDia, that alter hair cell mechanics
(109-111), and certain patients with autoimmune ear
disease have antibodies directed against B-actin (112).
Mutations in specialized ECM proteins and deletion
of integrin a8P1, which is found in hair cells, also
hinders stereocilia maturation and hair cell differ-
entiation (113).

Systemic and pulmonary hypertension, persistent
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pulmonary hypertension of the newborn, broncho-
pulmonary dysplasia, asthma, achalasia, preeclamp-
sia, urinary frequency, irritable bowel syndrome, and
many causes of chronic back pain, are all based on
muscle cell hypercontractility. Dupytren’s contracture
is characterized by hypercontractility of ligamental
fibroblasts (114), whereas glaucoma (115) and hydro-
cephalus (116) result from physical constrictions that
obstruct fluid flow in the eye and cerebrospinal space,
respectively. Recent studies suggest that genetic
mutations or malfunction of cytoskeletal proteins,
ECM molecules or integrins that alter cell and tissue
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mechanics can lead to impaired vascular smooth
muscle and cardiac muscle contractility, as well as
various forms of heart disease (119—121). In fact, most
of the molecular causes of heart failure appear to
disrupt the biomechanical balance between the
cytoskeleton, membrane, and ECM (122). In contrast,
decreased smooth muscle cell contractility results in
urinary stress incontinence (123), as well as defects in
male and female sexual function (124, 125). Abnormal
muscle tone also can lead to destabilization of the
skeleton (126) and contribute to skeletal and joint
diseases. For example, axial muscular dysfunction has
been implicated in the development of joint pathology
in ankylosing spondylitis (127).

In other conditions, mechanotransduction may be
compromised as a result of changes in ECM forma-
tion or remodeling. Many genetic diseases and
developmental disabilities, including various osteo-
chondrodysplasias, mucopolysaccharidoses and col-
lagenopathies are essentially disorders of connective
tissue structure and mechanics (128,129). In one
form of muscular dystrophy, a mutation in an ECM
protein (laminin o2) leads to both the muscular
degeneration and sensineural hearing loss that are
observed in many patients with this disease (130). A
mutation in a fibrillar collagen gene (COL11A1)
produces chondrodyplasia when homozygous, and
both osteoarthritis and hearing loss when hetero-
zygous. Patients with Stickler syndrome and Mar-
shall syndrome are also heterozygous for mutations
in this gene (131). Abnormal fibrillin deposition in
patients with Marfan’s syndrome alters the vascular
endothelial cell response to hemodynamic stresses
and results in aortic dissection due to local weakness
of the vascular wall (132). Accumulation of abnormal
ECM also contributes to development of abnormal
tissue mechanics and clinical compromise of function
in patients with scleroderma, pulmonary fibrosis,
vascular hypertension, and diabetic nephropathy,
whereas emphysema is characterized by enhanced
ECM breakdown. Although rheumatoid arthritis has
an inflammatory basis, joint pain and reduced
movement are also due to the breakdown of the
cartilage matrix. In fact, angiogenesis inhibitors that
prevent cartilage matrix dissolution by inhibiting
capillary invasion can significantly suppress the
clinical and histological symptoms of rheumatoid
arthritis in an animal model without evidence of
immunosuppression (133). Changes in ECM struc-
ture that alter tissue mechanics and provide a
constitutive stimulus for cell growth may even
contribute to cancer initiation and progression
(134-136). For example, overexpression of an
ECM-degrading enzyme in transgenic mice results
in formation of malignant tumors (136, 137). The
‘angiogenic switch’ that initiates tumor angiogenesis
and is required for cancer formation (138) also
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appears to be controlled by metalloproteinases that
structurally remodel ECM (139).

Other diseases result directly from deregulation of
transmembrane mechanical signaling. Atrial fibrilla-
tion may be caused by abnormal conversion of
mechanical stress gradients (e.g., secondary to volume
overload) into intracellular gradients of electrical
activity as a specific peptide inhibitor of stress-
activated ion channels can prevent the heartbeat from
losing its rhythm (140). Dystrophin, the gene product
that is mutated in Duchenne’s muscular dystrophy is
part of the specialized focal adhesion (dystroglycan)
complex that mechanically couples the cytoskeleton
to ECM in skeletal muscle (141). Mutations in various
load-bearing molecules in muscle, including other
adhesion complex proteins, integrins, or ECM pro-
teins, lead to development of similar muscular
dystrophies (130, 141-143). Moreover, cells with
these mutations exhibit abnormal responses to mech-
anical stress, as well as altered cell and cytoskeletal
mechanics (143-145). Kidney duct epithelial cells
from transgenic mice that lack functional polycystin
1, and hence develop autosomal dominant polycystic
kidney disease, fail to increase calcium influx in
response to fluid shear stresses when applied at levels
similar to those that occur in wvivo (60,61). If
collecting ducts utilize a mechanical control mechan-
ism similar to that of blood vessels which increase
their diameter when hemodynamic shear stresses rise
(58), then loss of this normal homeostatic mechanism
could lead to unregulated duct expansion and hence
cyst formation. Osteoporosis also may be caused by
aberrant mechanotransduction since similar bone loss
can result from mechanical unloading, for example,
due to extended bed rest or exposure to microgravity
(146). Interestingly, certain osteoporosis drugs speci-
fically target integrin receptors that mediate mechan-
otransduction (147). Other conditions that may result
from stretch-activated signaling cascades include
development of intimal hyperplasia induced by stent
placement in coronary arteries or by replacement of
constricted vessels with arteriovenous grafts (148),
and ventilation-induced lung injury (e.g., ARDS)
(149).

Recognition of the importance of mechanics and
cellular mechanotransduction for tissue development
also may help to explain the focal incidence of disease.
Although high cholesterol and LDL promote athero-
sclerotic plaque formation, these plaques preferen-
tially form in regions of disturbed blood flow (e.g.,
near vessel branches) (58). Thus, if one could under-
stand how cells sense flow, it might be possible to
prevent plaque formation in the future. Local changes
in tissue structure also may explain why genetic
diseases, including cancer, often present focally (e.g.,
retinoblastoma usually only occurs in one eye). In
other words, changes in tissue mechanics may
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DISEASES OF MECHANOTRANSDUCTION 9

Table 2. Mechanical therapies

Acupuncture

Anti-arrhythmic drugs
Anti-spasmodic drugs

Bone fracture healing

Botox

Cardiac perfusion

Distraction osteogenesis
Inotropic drugs

Lung ventilation

Massage therapy

Muscle relaxants

Orthodontics

Physical therapy

Rho-kinase inhibitor (fasudil)
Stents

Surfactant

Tissue engineering (manufacturing process)
Tissue expansion (e.g., breast)
Vasodilators

Ventilator therapy

Wound closure (e.g., vacuum-assisted)

A partial list of clinical therapies that are currently in use or in
development whose action is largely based on altering cell and
tissue mechanics, or directly altering cellular
mechanotransduction (see text for details).

contribute significantly to the epigenetic basis of
disease.

Understanding of the relation between structure
and function in living tissues and of fundamental
mechanisms of cellular mechanotransduction may
therefore lead to entirely new modes of therapeutic
intervention (Table 2). In fact, surgeons already use
mechanical therapies to promote tissue growth and
remodeling. Examples include the use of surfactant to
promote lung development in premature infants
(150), mechanical ventilation with low tidal volume
to decrease morbidity and death in patients with acute
lung injury and acute respiratory distress syndrome
(ARDS)(151), expandable stents to physically prevent
coronary artery constriction (152), tissue expanders to
increase the skin area available for reconstruction of
large surface defects, and devices for tension applica-
tion for distraction osteogenesis, orthodontics, bone
fracture healing, craniofacial surgery, cosmetic breast
expansion and closure of non-healing wounds (153,
154). These devices are believed to act through
alterations in microscale forces (e.g., cell stretching)
that activate cellular signal transduction (153, 154).
The therapeutic value of physical therapy, massage,
and muscle stimulation is also well known. But even
the effects of acupuncture therapy on pain control and
other clinical symptoms appear to result from
physical manipulation (twisting) of the needles that
produces ECM distortion and associated integrin-
dependent changes in cellular mechanotransduction
(155).

The finding that abnormal cell contractility is a
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common feature in many diseases may explain why a
toxin that modulates cell tension — Botulinum A
(Botox) — is being tested as a treatment for a wide
range of ailments, including stroke paralysis,
migraine headaches, facial tics, stuttering, lower back
pain, incontinence, carpal tunnel syndrome and tennis
elbow, in addition to being a high priced cosmetic
(156). Another chemical inhibitor of cell tension that
targets Rho-associated kinase, a molecule that both
mediates mechanosignaling through integrins and
regulates cytoskeletal contractility (69,70), also has
been found to prevent disease progression in experi-
mental models of glaucoma (157) and intimal
hyperplasia (158). Importantly, one form of this
compound, fasudil, appears to be useful for treatment
of systemic hypertension (159) as well as angina due
to myocardial ischemia in humans (160). Conven-
tional vasodilators, muscle relaxants, inotropic agents
and anti-spasmodic drugs similarly prevent clinical
symptoms based on their ability to modulate cell
mechanics, and anti-arrythmics directly modulate
mechano-electrical conversion in heart cells. The
function of cardiac perfusion devices is also purely
mechanical. However, even complex developmental
processes, such as angiogenesis, can be controlled by
altering cell and tissue mechanics, for example, using
drugs that target the cytoskeleton (161, 162), integrins
(163) or the ECM (164-166). Some of these drugs have
entered human clinical trials for angiogenesis-depen-
dent diseases, such as cancer and macular degenera-
tion. Thus, someday it may be possible to treat a huge
range of diseases using drugs that specifically target
molecules that contribute to mechanoregulation. In
the field of tissue engineering, mechanical force
regimens also have been integrated into device
fabrication protocols. Engineered tissues, including
artificial blood vessels, skeletal muscle, cardiac
muscle and heart valve, greatly increase their mech-
anical strength and clinical efficacy if preconditioned
using force regimens prior to implantation (167-171).
Design and fabrication of synthetic ‘biomimetic’
biomaterials and nanotechnologies that mimic the
mechanical as well as chemical properties of natural
tissue structures may revolutionize the medical device
industry in the future.

Conclusion

The current focus in medicine is on the genetic basis
of disease. However, it is not necessary to correct the
underlying genetic defect in order to treat clinically
relevant symptoms or relieve the pain and morbidity
of disease. Moreover, most of the clinical problems
that bring a patient to the doctor’s office result from
changes in tissue structure and mechanics. Although
these physical alterations have been commonly
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10 INGBER

viewed as the end-result of the disease process, recent
advances in mechanobiology suggest that abnormal
cell and tissue responses to mechanical stress may
actively contribute to the development of many
diseases and ailments. Thus, it might be wise to
search for a physical cause when chemical or mol-
ecular forms of investigation do not suffice.

These observations also raise the possibility that
the molecules that mediate mechanotransduction,
including ECM molecules, cell surface adhesion
receptors, cytoskeletal components, and related signal
transduction molecules may represent future targets
for therapeutic intervention in a variety of diseases.
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