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The surface of the vasculature, which comprises a mono-
layer of endothelial cells (ECs), is constantly exposed to 

various forces as blood flows. It is well-established that athero-
sclerotic plaques localize to areas of disturbed flow (d-flow) 
found at regions where vessels curve and also at vessel bifur-
cations and branch points. Low endothelial nitric oxide syn-
thase (eNOS) expression and increased adhesion molecule 
expression are observed in these particular areas.1,2 In addition, 
d-flow increases secretion of proinflammatory molecules, such 
as MCP-1 (monocyte chemotactic protein 1), PDGFs (platelet-
derived growth factor), and endothelin-1 from EC, which pro-
mote leukocyte infiltration and smooth muscle proliferation, 
leading to the development of atherosclerosis.3–5 In contrast, 
atherosclerosis is rare in areas exposed to steady laminar flow 
(s-flow). EC stimulated by s-flow have been shown to increase 
the secretion of nitric oxide, prostacyclin, and tissue-type plas-
minogen activator, which downregulate both thrombogenic 
and inflammatory cellular events.6–9 The human coronary 
artery, especially at points of bifurcation, is exposed to d-flow 
and exhibits a susceptibility toward atherosclerosis. In essence, 
s-flow protects against atherosclerosis (atheroprotective flow), 
whereas d-flow promotes atherosclerosis (atheroprone flow).10

Please see http://atvb.ahajournals.org/site/misc/
ATVB_in_Focus.xhtml for all articles published 

in this series.
D-flow promotes inflammation and apoptosis in EC, and this 

effect of d-flow is critical for the pathogenesis of many chronic 

inflammatory conditions and endothelial dysfunction in epicar-
dial blood vessels (coronary arteries in the heart) and peripheral 
blood vessels (such as the carotid artery and femoral artery). 
Blood flow in these vessels leads to activation of mechanosen-
sitive genes in EC, and this process involves transcription fac-
tor regulation (eg, Kruppel-like factor [KLF2/4], NF-κB, AP-1, 
early growth response-1, c-Jun, c-fos, and c-myc).11–13 Substantial 
evidence shows that these transcription factors are regulated by 
a family of mitogen-activated protein kinases (MAPKs). Of 
note, atheroprone/d-flow–induced signaling in which protein 
kinase C-ζ (PKCζ, p90 ribosomal S6 kinase (p90RSK), and 
increased levels of SUMOylation are involved is not activated by 
atheroprotective/s-flow,14 suggesting that there must be specific 
mechanosensing and signaling systems for each type of flow. 
In this brief review, we will discuss some of the recent findings 
unique to the EC mechanotransduction system with respect to 
both atheroprone/d-flow and atheroprotective/s-flow.

S-Flow Activates ERK5 Kinase
MAPKs are highly conserved serine/threonine kinases. The 
MAPKs themselves require dual phosphorylation on a Thr-X-
Tyr motif to become active. Three major MAPK cascades have 
been extensively studied in blood vessels: extracellular signal–
regulated kinases (ERK1 and ERK2), c-Jun N-terminal kinases 
(JNK1 and JNK2), and p38 kinases. A fourth MAPK member, 
ERK5, also known as big MAPK-1, has also been identified in 
EC.15–17 MEK5 and ERK5 were first identified as 2 components 
of this new protein kinase–signaling cascade.18,19 MEK5 is the 
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Abstract—Atherosclerosis is a focal disease that develops preferentially where nonlaminar, disturbed blood flow occurs, such 
as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to disturbed flow 
compared with steady laminar flow. Disturbed flow that occurs in so-called atheroprone areas activates proinflammatory 
and apoptotic signaling, and this results in endothelial dysfunction and leads to subsequent development of atherosclerosis. 
In contrast, steady laminar flow as atheroprotective flow promotes expression of many anti-inflammatory genes, such as 
Kruppel-like factor 2 and endothelial nitric oxide synthase and inhibits endothelial inflammation and athrogenesis. Here 
we will discuss that disturbed flow and steady laminar flow induce pro- and antiatherogenic events via flow type–specific 
mechanotransduction pathways. We will focus on 5 mechanosensitive pathways: mitogen-activated protein kinases/
extracellular signal–regulated kinase 5/Kruppel-like factor 2 signaling, extracellular signal–regulated kinase/peroxisome 
proliferator–activated receptor signaling, and mechanosignaling pathways involving SUMOylation, protein kinase C-ζ, 
and p90 ribosomal S6 kinase. We think that clarifying regulation mechanisms between these 2 flow types will provide 
new insights into therapeutic approaches for the prevention and treatment of atherosclerosis.   (Arterioscler Thromb Vasc 
Biol. 2014;34:2378-2386.)
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only identified immediate upstream MAP kinase of ERK5. The 
critical role of JNK activation in endothelial inflammation and 
apoptosis has been reported.20–24 We found that s-flow decreases 
inflammation in EC induced by tumor necrosis factor-α–
mediated JNK activation and subsequent VCAM1 expression. 
Although the exact mechanism remains unclear, the s-flow–
induced inhibition of the JNK pathway is dependent on activa-
tion of the MEK5-ERK5, but not MEK1-ERK1/2, pathway.25

The unique aspect of ERK5 is that it is not only a kinase, 
but also a transcriptional coactivator with a unique C-terminus 
transactivation domain (Figure 1).26,27 Although both ERK1/2 
and ERK5 contain the same threonine/glutamic acid/tyrosine 
(TEY) dual phosphorylation sites and are crucial for regulat-
ing proliferation of several different cell types, many unique 
functions of ERK5, which are different from other MAP 
kinases, have been reported. First, activation of ERK5 is docu-
mented to have an antiapoptotic effect in cardiac, neuronal, 
and ECs through increasing Bad phosphorylation, but the 
detailed mechanism remains unclear.25,28–30 Second, our studies 
have revealed that s-flow–induced ERK5 activation increases 

peroxisome proliferator–activated receptor (PPAR) γ tran-
scriptional activity and KLF2/4 expression, with consequent 
anti-inflammatory and atheroprotective effects.26,31

S-Flow Activates PPARs Transcriptional 
Activity Via ERK5

PPARs are ligand-activated transcription factors, which form 
a subfamily of the nuclear receptor gene family. PPARs con-
tain 2 activation function domains residing in the NH

2
-terminus 

A/B domain (activation function-1) and the COOH-terminus E 
domain (activation function-2; Figure 2). Three related PPAR 
isotypes have been identified to date: PPARα, PPARβ/δ, and 
PPARγ. It is well-established that PPARs possess anti-inflam-
matory effects via ligand-dependent and ligand-independent 
mechanisms.34–36 Phosphorylation of PPARγ Ser-82 by ERK1/2 
significantly inhibits its transcriptional activation.37 In contrast 
to ERK1/2, ERK5 does not phosphorylate PPARγ, but instead, 
its binding with PPARγ regulates PPARγ transcriptional activ-
ity. We have found that s-flow increases the association of ERK5 
with the hinge-helix 1 region of PPARγ and upregulates PPARγ 
transcriptional activity by releasing the corepressor, SMRT 
(silencing mediator of retinoic acid and thyroid hormone recep-
tor; Figure 2). Both PPARγ transcriptional activation and the 
release of its corepressor (transrepression) inhibit TNF-mediated 
NF-κB activation and subsequent inflammatory responses.26,38,39 
The detailed regulatory mechanism of transrepression was dis-
cussed extensively in other reviews.40–43

In addition to PPARγ, ERK5 can also increase PPARδ tran-
scriptional activation by its association with PPARδ, although the 
PPARδ binding site with ERK5 is not the hinge-helix 1 region, 
unlike PPARγ44 ERK5-mediated PPARδ activation also contrib-
utes to anti-inflammatory responses induced by heme oxygenase 
1. These data suggest that the ERK5-PPAR module play a cru-
cial role in s-flow–induced anti-inflammatory processes.

Nonstandard Abbreviations and Acronyms

EC endothelial cell

eNOS endothelial nitric oxide synthase

ERK-5 extracellular signal–regulated kinase

KLF-2 Kruppel-like factor 2
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Figure 1. Primary structure of extracel-
lular signal–regulated kinase (ERK5) and its 
regulation. The N-terminus region with small 
ubiquitin-like modifier (SUMO) modification 
inhibits its own transactivation. After ERK5 
kinase activation induced by MEK5 binding 
and threonine/glutamic acid/tyrosine (TEY)  
motif phosphorylation with de-SUMOylation 
of K6/K22 sites, ERK5 transcriptional activ-
ity at the C-terminus region is fully activated. 
In contrast, atheroprone flow increases 
ERK5-SUMOylation and ERK5 S496 phos-
phorylation and inhibits ERK5 transcriptional 
activity. eNOS indicates endothelial nitric 
oxide synthase; KLF, Kruppel-like factor; 
p90RSK, p90 ribosomal S6 kinase; PKCζ, 
protein kinase C-ζ; and PPAR, peroxisome 
proliferator–activated receptor.
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ERK5, KLF2, and Endothelial Dysfunction
The KLF family is a group of zinc finger transcription fac-
tors with important biological roles in regulating blood vessel 
permeability, blood coagulation, and inflammation.45 Dekker 
et al46 first identified KLF2 as a gene regulated by s-flow in 
the endothelium, which is a key transcriptional regulator of 
EC inflammation. NF-κB is a key transcriptional factor that 
regulates expression of proinflammatory mediators, includ-
ing cytokines, chemokines, and molecules that foster cell-to-
cell adhesion.47 KLF2 reduces NF-κB transcriptional activity 
and subsequent adhesion molecule expression via compet-
ing for the association of CBP/p300 cofactor with NF-κB.48 
Furthermore, Parmar et al31 have reported that s-flow increases 
KLF2 expression via the MEK5-ERK5-MEF2 signaling path-
way and impairs endothelial inflammation. Another major 
endothelial function regulated transcriptionally by KLF2 is 
the control of vessel tone. KLF2 induces eNOS expression by 
direct association with the eNOS promoter with the recruit-
ment of the coactivator CBP/p300.49 A crucial role for KLF2 
in inhibiting endothelial permeability by tight junction protein 
expression was also reported.50 Consistent with such key roles 
of ERK5 in EC physiology in vitro, EC apoptosis and inflam-
mation are accelerated in endothelial-specific ERK5 knock-
out mice,30,51 and the deletion of ERK5 in ECs accelerates 

atherosclerosis formation in LDL receptor deficient mice.52 
These data strongly suggest that both ERK5 kinase activity 
and transcriptional activity play key roles in ECs achieving 
atheroprotective function. S-flow–induced ERK5 activation 
in ECs upregulates PPARs and KLF2 transcriptional activ-
ity, elicits anti-inflammatory responses, and maintains normal 
vascular reactivity and endothelial barrier function.

SUMOylation as a Mechanosignaling Mediator
Small ubiquitin-like modifier (SUMO) proteins covalently 
modify certain residues of specific target substrates to alter 
their functions. A substantial amount of evidence indicates 
that SUMOylation plays roles in flow-induced signaling and 
the pathogenesis and development of cardiovascular compli-
cations.53–55 SUMOylation is a dynamic and reversible process 
mediated by both conjugation and deconjugation enzymes. It is 
analogous to ubiquitination, but SUMO conjugation involves a 
different set of enzymes (Figure 3). First, the mature form of 
SUMO is activated by E1-activating enzymes, a SAE1-SAE2 
heterodimer.57 After this activation, SUMO is transferred to 
Ubc9, an E2 conjugase, forming a thioester bond between Ubc9 
and SUMO.58 Finally, Ubc9 transfers SUMO to the target sub-
strate containing the free e-amino group of a lysine residue, 
which is regulated by several SUMO E3 ligases, including the 

Figure 2. Model for the extracellular signal–regulated kinase (ERK5)-peroxisome proliferator–activated receptor (PPARγ) interaction-mediated 
PPARγ transactivation. The position of Helix 12 is regulated by ligand binding. When the PPARγ ligand binds to the receptor, Helix 12 folds 
back to form a part of the coactivator binding surface and inhibits corepressor (such as silencing mediator of retinoic acid and thyroid hor-
mone receptor [SMRT]) binding to PPARγ32 The corepressor interaction surface requires Helix 3–5.33 We found a critical role of the PPARγ 
hinge-helix 1 domain in ERK5-mediated PPARγ transactivation. The inactive N-terminus kinase domain of ERK5 inhibits its own transactiva-
tion and PPARγ binding. After ERK5 activation, the inhibitory effect of the N-terminus domain decreases, and subsequently, the middle region 
can fully interact with the hinge-helix 1 region of PPARγ. The association of ERK5 with the hinge-helix 1 region of PPARγ releases corepressor 
of SMRT and induces full activation of PPARγ26 AF-1/2 indicates activating function (AF)-1/2 transactivation domain; and DBD, DNA binding 
domain. Reprinted and modified from Akaike et al26 with permission of the publisher. Copyright © 2004, American Society for Microbiology.
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family of protein inhibitors, such as activated STAT (PIAS1-
4), Polycomb-2 protein (Pc2), and RanBP2/Nup358.59 Sentrin/
SUMO-specific proteases (SENPs; SENP1-7) catalyze deconju-
gation of SUMOylated substrates or edit SUMO precursor into a 
matured form, which terminates with a pair of glycine (Gly) res-
idues (Figure 3).60,61 As described above, the number of SUMO 
E1 and E2 enzymes is small compared with SUMO E3 ligases 
and SENPs. Therefore, the coordination of different SUMO E3 
ligases and SENPs may be crucial for a specific EC function in 
which flow-induced protein SUMOylation plays a role.

ERK5-SUMOylation and D-Flow
It is clear that SUMO influences many different biological pro-
cesses, but particularly important in the present context is the 
regulation of transcription and protein kinase activity of modi-
fied proteins.55,62 As explained above, s-flow has a vasoprotec-
tive effect via ERK5-mediated KLF2 and eNOS expression.63,64 
Our studies showed that treatment of ECs with H

2
O

2
, advanced 

glycation end products, or d-flow significantly increased 
ERK5 SUMOylation at Lys6 and Lys22 residues and that this 
SUMOylation inhibited ERK5/MEF2 transcriptional activity 
and subsequent KLF2 promoter activity and KLF2-mediated 
eNOS expression.63 Of note, both H

2
O

2
 and advanced glycation 

end products increased ERK5 TEY motif phosphorylation as 
well as its protein kinase activity, suggesting that the inhibition 
of ERK5 transcriptional activity by H

2
O

2
 and advanced glycation 

end products is an event independent of its protein kinase activ-
ity. We also found that the reduction of eNOS and KLF2 expres-
sion by H

2
O

2
 and advanced glycation end products treatment 

was abolished in ECs expressing ERK5 K6/22R SUMOylation 
mutant, suggesting that ERK5 SUMOylation may downregulate 
the vaso-protective effects of s-flow.63 Furthermore, we found 
that ERK5 SUMOylation was increased by d-flow, but it was 
decreased by s-flow.65 These data strongly suggest that ERK5 
SUMOylation plays an important role in regulating endothelial 
inflammation and vascular tone and that d- and s-flow have, 
respectively, yin and yang effects on ERK5 SUMOylation.

Role of p53 SUMOylation in D-Flow–Induced 
EC Apoptosis

D-flow is able to increase both endothelial apoptosis and 
proliferation, which augments EC turnover and creates focal 
sites of increased endothelial permeability, inflammation, and 

dysfunction.66 However, the mechanism by which d-flow reg-
ulates EC turnover, especially apoptosis, is unclear. To obtain 
some insights into this issue, we investigated the role of p53 in 
regulating d-flow–induced EC apoptosis (Figure 4A). Acting 
as a sensor for DNA damage, the transcription factor p53 is a 
key molecule in determining cellular fate. p53 in the nucleus 
not only increases the expression of proapoptotic genes, but 
also is protective against cell death via upregulating p21 
expression.67 In fact, Lin et al reported that s-flow increased 
p53 expression and JNK-mediated p53 phosphorylation, 
which caused EC growth arrest via increasing GADD45 and 
p21cip1 expression.68 These data suggest that the atheroprotec-
tive effect exerted by s-flow increases p21 via p53, inducing 
growth arrest, and may inhibit simultaneously apoptosis. It is 
important to note here that most of p53 antiapoptotic effects 
has been explained by its function in the nucleus, especially 
under the resting condition.67 We found increased levels of 
nuclear p53 and reduced numbers of apoptotic ECs in the area 
exposed to s-flow,53 which supports this general idea.

In contrast to this, EC exposed to d-flow have decreased 
levels of nuclear p53 localization and become apoptosis. 
We have reported that d-flow induces EC apoptosis via p53 
SUMOylation in a PKCζ-dependent manner.53 Previously, 
Carter et al reported a role of p53 SUMOylation in regulating 
p53 localization.69 They showed that, in its unmodified form, 
the p53 C-terminus nuclear export signal was masked by its 
own C-terminus region and that this caused persistent nuclear 
localization. A low level of ubiquitination by mouse double 
minute 2 exposed the nuclear export signal, promoting p53 
to interact with PIAS4 and causing further modification by 
SUMOylation, which led to p53 nuclear export. These results 
show that p53 nuclear export is regulated by SUMOylation 
(Figure 4B).69 Cytosolic p53 has nontranscriptional proapop-
totic activities. It has been reported that cytoplasmic p53 
directly interacts with Bcl-2 (B cell lymphoma/leukemia-2) 
family member proteins, Bcl-xL and Bcl-2, and blocks their 
well-known antiapoptotic function.70,71 We have reported that 
d-flow induces p53 nuclear export, p53-Bcl-2 binding, and 
apoptosis in a p53 SUMOylation-dependent manner.53

The next question is how d-flow increases p53 
SUMOylation. We found that atheroprone flow increased 
PKCζ binding to the E3 SUMO ligase PIAS4 and induced p53-
SUMOylation.72 Among the PKC family members, atypical 

Figure 3. The regulation of SUMOylation 
pathway. Protein SUMOylation is achieved 
by a recycle system consisting of conjuga-
tion and deconjugation pathway. Small 
ubiquitin-like modifier (SUMO) conjugation to 
a target substrate requires an enzymatic cas-
cade, which involves 3 classes of enzymes 
(E1→E2→E3). The sentrin/SUMO-specific 
proteases (SENPs) are responsible for the 
deconjugation pathway as well as the matu-
ration process of newly synthesized SUMO 
protein. The primary subcellular localization 
of each SENP is also listed.56 Reprinted and 
modified from Woo et al55 with permission of 
the publisher. Copyright © 2010, Elsevier.
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PKCζ was recently reported to have an important function in 
EC.73,74 Magid and Davies reported that this PKC isoform was 
highly expressed in EC in the atheroprone areas of porcine 
aorta.73 Frey et al74 demonstrated involvement of PKCζ in 
oxidant generation in ECs via NADPH (nicotinamide adenine 
dinucleotide phosphate) oxidase activation. Consistent with 
these results, endothelial PKCζ activation was elevated in ath-
erosclerotic lesions.72,75 Therefore, we investigated the interac-
tions of PKCζ with SUMO ligases and discovered that d-flow 
increased PKCζ binding to the E3 SUMO ligase PIAS4 and 

stimulated p53-SUMOylation.72 It is likely that PIAS4 acti-
vation by PKCζ is likely to be phosphorylation-independent 
because we did not observe PIAS4 phosphorylation by PKCζ. 
It is noteworthy that active protein kinases may regulate sig-
naling pathways and cell functions not only by phosphorylat-
ing substrates, but also by direct protein–protein interactions.

It has been reported that PKCζ contains a pseudosubstrate 
autoinhibitory sequence (amino acids 116–122), and the 
release of the kinase domain (amino acids 268–587) from 
this auto-inhibitory domain leads to PKCζ activation76,77 

A B

C

Figure 4. Atheroprone flow increases p53 SUMOylation via protein kinase C-ζ (PKCζ)–PIAS4 binding. A, Atheroprone flow uniquely 
activates PKCζ, which increases PKCζ–PIAS4 binding and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligase activity and subsequently 
increases p53 SUMOylation. SUMOylation causes p53 nuclear export and binds to B cell lymphoma/leukemia-2 (Bcl-2), which inhibits 
antiapoptotic function of Bcl-2 and increases apoptosis. B, p53 nuclear export and stabilization. Masking of the C-terminus nuclear 
export signal (NES) results in nuclear localization of unmodified p53, but a low level of ubiquitination by mouse double minute 2 (MDM2) 
exposes the NES, causing the p53-Ub fusion protein to come out of the nucleus. When MDM2 levels are low, ubiquitination promotes 
the interaction of p53 with PIAS4 and further modification of p53 by SUMOylation that causes the release of MDM2 and nuclear export, 
which may increase the cytoplasmic apoptotic function of p53. Under conditions of high MDM2, persistent binding and activity of MDM2 
leads to polyubiquitination and degradation of p53.69 These data suggest important roles of SUMOylation in p53 stabilization, localization, 
and subsequent apoptosis. Reprinted and modified from Carter et al69 with permission of the publisher. Copyright © 2007, Macmillan 
Publishers Ltd. C, PKCζ-mediated p53 SUMOylation requires PKCζ–PIAS4 binding at SP-RING domain, not PKCζ-mediated phosphory-
lation of PIAS4. SAP indicates scaffold attachment factor-A/B, acinus, and PIAS domain; and SP-RING, Siz/PIAS-RING domain.55
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(Figure 4C). We found that the C-terminus kinase domain of 
PKCζ (amino acids 401–587) was a PIAS4–binding site, and 
the deletion of the N-terminus autoinhibitory domain (amino 
acids 1–200) increased PKCζ–PIAS4 association.53 Therefore, 
in addition to its protein kinase activation, the subsequent 
release of the PKCζ N-terminus autoinhibitory domain is 
necessary for the PKCζ–PIAS4 association. PKCζ associ-
ates with the catalytic site, RING domain, of PIAS4, which 
recruits the cognate E2 conjugating enzyme into the PIAS4/
substrate complex to facilitate SUMO conjugation. Therefore, 
the association of PKCζ with PIAS4 may alter the structure 
and enzymatic activity of PIAS4. Taken together, PKCζ acti-
vation and subsequent PKCζ–PIAS4 binding are crucial for 
d-flow–induced p53 SUMOylation and ECs apoptosis.53

Other PKCζ That Mediate Endothelial 
Dysfunction

We have discussed the mechanisms by which PKCζ mediates 
d-flow–induced endothelial apoptosis in the previous sec-
tion. Here, we discuss other PKCζ functions in ECs. PKCζ 
regulates not only endothelial apoptosis but also TNFα-
induced endothelial dysfunction, particularly under s-flow 
conditions.64 TNF-α promotes association between PKCζ and 
ERK5 and also increases ERK5 S486 phosphorylation. ERK5 
S486 site, when phosphorylated, evokes eNOS protein degra-
dation, leading to endothelial dysfunction. Although several 
mechanisms including calcium-dependent calpain-mediated 
degradation have been proposed for eNOS protein degrada-
tion,78,79 it remains unclear exactly how PKCζ-ERK5-pS486 
mediates eNOS degradation.

In addition to ERK5, we also reported the importance of 
p62 on TNF-α-induced PKCζ activation.80 p62 is a scaffold 
protein containing a Phox/Bem1p (PB1) domain in its NH

2
-

terminus region, which can interact with other PB1 domain 
containing proteins via PB1–PB1 interaction.81 PKCζ also 
contains a PB1 domain, and the p62-PKCζ association is criti-
cal for the activation of PKC downstream events, such as JNK 
and caspase 3 activation.80 The precise role of this p62-PKCζ 
module in s-flow and d-flow needs further investigation.

SENP2 and Atheroprone D-Flow
SENP2 is a de-SUMOylation enzyme, which is important for 
both processing new SUMO proteins for conjugation as well 
as deconjugation of SUMO from SUMOylated proteins. Six 
isoforms exist in human (SENP1-3 and 5–7).82 In contrast 
to the C-terminus that contains the well-conserved catalytic 
domain, the N-terminus is poorly conserved among differ-
ent isoforms, suggesting that the enzyme is regulated by the 
N-terminus,61 but it remains unclear how each SENP isoform 
recognizes its specific substrates and causes different func-
tional consequences. Among the 6 isoforms, the functions of 
SENP1 and SENP2 have been relatively well studied. Li et al83 
showed that TNFα transiently induced SENP1 translocation 
from the cytosol to the nucleus and subsequently increased 
JNK activation and apoptosis via Homeodomain Interacting 
Protein Kinase 2 de-SUMOylation in EC. SENP1–/– embryos 
are severely anemic because of diminished erythropoietin pro-
duction, and this leads to SUMOylation-induced HIF1α deg-
radation.84 The deletion of SENP2 in mouse causes defects in 
cardiac development by inhibiting Gata4 and Gata6 expres-
sion and accumulation of SUMOylated Pc2/CBX4 (a poly-
comb repressive complex 1 subunit). HIF1α stabilization is 
not affected in SENP2–/– mouse embryonic fibroblasts, demon-
strating the substrate specificity between SENP1 and SENP2.

As we explained above, we found that d-flow induced 
p53 and ERK5 SUMOylation, leading to EC apoptosis and 
inflammation, respectively.53,63 Interestingly, reduced expres-
sion of SENP2 increased both endothelial p53 and ERK5 
SUMOylation, hence increased EC dysfunction and inflam-
mation, and accelerated atherosclerotic plaque formation.65 
In addition, we found that d-flow–induced adhesion molecule 
expression and EC apoptosis were inhibited in cultured ECs 
overexpressing p53 or ERK5 SUMOylation mutant.65 In con-
trast, s-flow inhibited ERK5 SUMOylation.65 Taken together, 
we may conclude that SUMOylation of p53 and ERK5 is both 
necessary and sufficient to promote endothelial apoptosis 
and inflammation under the conditions of d-flow. One might 
expect SENP2 expression to be downregulated by d-flow, but 
we did not observe this effect in EC exposed to d-flow.65 We 
think that d-flow likely regulates the de-SUMOylation activity 

Figure 5. Atheroprone flow increases p90 
ribosomal S6 kinase (p90RSK) activation, 
leading to p90RSK-extracellular signal–reg-
ulated kinase (ERK5) association and ERK5 
S496 phosphorylation, and subsequently 
decreases in ERK5 transcriptional activity. 
At the basal level, inactive p90RSK inhibits 
the D-domain to bind ERK5. Once p90RSK 
is activated, the inhibition of the kinase 
domain is released and the D-domain 
of p90RSK associates with the ERK5 
C-terminus domain86 and increases ERK5 
S496 phosphorylation, which inhibits ERK5 
transcriptional activity.87 CTKD indicates 
COOH-terminal kinase domain; D-domain, 
NH2-terminal docking domain; and NTKD, 
NH2-terminal kinase domain.
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of SENP2 or the cellular localization of SENP2, but additional 
studies will be needed to clarify these points.

ERK5 and Its Inhibitory Kinase, p90RSK, 
Under D-Flow

p90RSK is a serine/threonine kinase containing 2 functional 
kinase domains (Figure 5).85 The N-terminus kinase belongs 
to the AGC group (protein kinase A, G, and C families group) 
of kinases (ie, protein kinase A [PKA] and protein kinase C 
[PKC]). Within this AGC group, p70S6K has the greatest 
sequence identity (≈ 60%) within the p90RSK N-terminus 
kinase region. The C-terminus kinase belongs to the cal-
cium/calmodulin-dependent kinase group. These 2 p90RSK 
kinase domains possess different functional properties. The 
N-terminus kinase has the most activity because it directly 
phosphorylates p90RSK substrates. The C-terminus kinase 
domain, conversely, plays only a minor direct role in phos-
phorylation, but its presence, together with the linker region, 
is required for full activation of the N-terminus kinase. The 
C-terminus tail contains a short docking motif for the spe-
cific association between p90RSK and ERK1/2 85–89. p90RSK 
is located downstream of the Raf-MEK-ERK1/2 signaling 
pathway,90 and ERK1/2 activates the C-terminus kinase of 
p90RSK, leading to full activation of the N-terminus kinase 
and subsequent substrate phosphorylation. However, the 
involvement of an ERK1/2-independent pathway has also 
been suggested.91

The activation and nuclear translocation of p90RSK are con-
comitant with immediate early gene expression.92,93 p90RSK is 
also involved in the activation of NF-κB by phosphorylation 
of Iκ-B94 or phosphorylation of transcription factors, including 
c-Fos,95 Nur77,96 and CREB.97 Although ERK5 can regulate 
p90RSK kinase activation as an upstream kinase like ERK1/2 
under certain conditions,98 we have reported that p90RSK also 
directly phosphorylates ERK5 S496 and inhibits its transcrip-
tional activity.52 In this study, we found that p90RSK is asso-
ciated with the ERK5 C-terminus transcriptional activation 
domain (amino acids 571–807). When we overexpressed this 
C-terminus fragment as a decoy, both p90RSK-ERK5 asso-
ciation and H

2
O

2
-induced reduction of ERK5 transcriptional 

activity were inhibited.52 These data suggest that inhibition 
of ERK5 transcriptional activity depends on p90RSK-ERK5 
binding. In addition, phosphorylation of ERK5 S496 by 
p90RSK inhibits ERK5 transcriptional activity as well as 
eNOS expression. Finally, we also found increased p90RSK 
activation in regions of d-flow in the aortic arch, indicating 
that p90RSK activation and atherosclerosis are closely linked. 
The inhibition of 90RSK activation by FMK-MEA (a p90RSK 
specific inhibitor) significantly reduced atherosclerosis plaque 
formation.52 Further studies are necessary to elucidate the 
precise mechanism by which d-flow regulates the function of 
p90RSK that leads to endothelial dysfunction.

Conclusions
It is apparent now from multiple studies that ECs sense and 
respond differently to s-flow and d-flow. Many studies have 
also sought to define molecular mechanisms responsible for 
mechano-trasduction initiated by different patterns of flow, 

but the exact nature of signaling that d-flow and s-flow initiate 
in ECs has to date evaded investigators. In this review, we have 
discussed several molecules and signaling events, which seem 
to be differentially regulated by atheroprone and atheroprotec-
tive blood flow patterns. Molecules that may be involved in 
flow pattern–specific signaling include PKCζ and p90RSK for 
d-flow-initiated signaling and ERK5, KLF2/4, and PPARs for 
s-flow. Understanding the interplay among these molecules 
under the 2 different types of flow may be the final key needed 
to unlock the door which stands between EC dysfunction and 
atherosclerosis formation.
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