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Abstract  Cells translate mechanical forces in the environment into biochemical 
signals in a process called mechanotransduction. In this way, mechanical forces 
direct cell behavior, including motility, proliferation, and differentiation, and 
become important in physiological processes such as development and wound 
healing. Abnormalities in mechanotransduction can lead to aberrant cell behavior 
and disease, including cancer. Changes in extracellular mechanical forces or defects 
in mechanosensors can result in misregulation of signaling pathways inside the cell, 
and ultimately lead to malignancy. Here, we discuss the ways in which physical 
attributes of the tumor microenvironment can promote metastasis and genomic 
instability, two hallmark features of cancer.
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2D	 Two-dimensional
3D	 Three-dimensional
αSMA	 α-smooth muscle actin
bFGF	 Basic fibroblast growth factor
ECM	 Extracellular matrix
EGF	 Epidermal growth factor
EMT	 Epithelial-mesenchymal transition
ERK	 Extracellular-signal-regulated kinase
FAK	 Focal adhesion kinase
FGF	 Fibroblast growth factor
GIN	 Genomic instability
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IFP	 Interstitial fluid pressure
ILK	 Integrin-linked kinase
MET	 Mechanoelectrical transduction
MLC	 Myosin light chain
MMP	 Matrix metalloproteinase
PDGF	 Platelet-derived growth factor
PI3K	 Phosphoinositide 3-kinase
PTEN	 Phosphatase and tensin homolog
ROCK	 Rho-associated kinase
ROS	 Reactive oxygen species
RTK	 Receptor tyrosine kinase
TAZ	 transcriptional co-activator with PDZ-binding motif
TGF-β	 Transforming growth factor β
VEGF	 Vascular endothelial growth factor
YAP	 Yes-associated protein

Introduction

Over a decade ago, Hanahan and Weinberg defined several features of cancer that 
they considered essential for the acquisition of a malignant phenotype, including 
replicative immortality, evasion of growth suppressors, evasion of apoptosis, stim-
ulation of angiogenesis, stimulation of proliferation, and invasion and metastasis 
[1]. Since then, a flood of cancer research has led to modification and expansion 
of the proposed hallmarks; metastasis and genomic instability are two that per-
sist [2]. Cancer is widely regarded as a disease of the cell, and cell behavior is 
directed by both biochemical and physical cues, which can work independently or 
synergistically [3]. Accordingly, the tumor microenvironment has been shown to 
affect tumor progression [4, 5]. This chapter focuses on the physical factors and 
mechanical forces that tumor cells encounter in the tumor microenvironment, which 
can in turn alter their behavior. Cells convert the physical signals they receive into 
biological responses via a process known as mechanotransduction [6].

Mechanotransduction involves both the external environment and internal sig-
naling [7]. The transmission of external forces to intracellular signaling is centered 
on proteins that are activated by force, such as integrins [8, 9] and T-cell receptors 
[10]. Many cellular phenotypes, including morphology, motility, and proliferation, 
are governed by external mechanical forces [11–13]. Thus, mechanotransduction 
is central to a variety of physiologically normal processes, including embryonic 
development, differentiation, wound healing, and angiogenesis [14, 15]. Defects 
in mechanotransduction are known to be involved in several diseases, including 
cancer [16]. Understanding how defects in mechanotransduction affect tumor pro-
gression will add to our fundamental knowledge of cancer biology and may suggest 
new approaches for treatment.
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How Mechanotransduction Regulates Normal Cell 
Behavior

Extracellular Factors Affecting Mechanotransduction  
in Normal Cells

Most cells are anchorage dependent: they need to adhere to a substratum to prevent 
apoptosis and promote cell cycle progression [17]. Thus, the mechanical microen-
vironment is important for cell survival. Cells sense their environment via confor-
mational changes in mechanically responsive proteins, known as mechanosensors. 
Physical forces induce these conformational changes, which result in downstream 
signaling inside the cell [18, 14]. Forces can originate from a variety of features, 
including the rigidity of the extracellular matrix (ECM), static or dynamic fluid 
flow, and tissue growth [6]. These forces are further classified into specific types 
of loads that cells can detect. For example, forces incurred by blood flow include 
hydrodynamic pressure, shear stress, and cyclic strain, and all of these help regulate 
endothelial cell behaviors [19] such as cell reorientation [20].

Cells can also respond to mechanical loads by secreting biochemical factors, 
some of which result in subsequent ECM remodeling. Growth factors comprise 
one class of proteins that are important in this respect. Transforming growth factor 
β (TGF-β) is sequestered in the ECM, and is released when internal contractility 
of myofibroblasts is balanced externally by a stiff matrix, causing conforma-
tional changes in protein complexes embedded in the ECM. Free TGF-β starts a 
feed-forward loop, causing increased deposition of ECM proteins and additional 
(increased) expression of TGF-β [21]. Various other growth factors increase activity 
as a result of mechanical load, as evidenced by endothelial secretion of basic fibro-
blast growth factor (bFGF) in response to shear stress and hydrostatic pressure [22, 
23]. Mechanical forces also regulate the expression of matrix remodeling proteins 
such matrix metalloproteinases (MMPs). This is seen in human monocytes/mac-
rophages, which have been shown to increase expression of MMPs under cyclic 
strain, and thus contribute to ECM degradation [24].

Intracellular Factors Affecting Mechanotransduction  
in Normal Cells

There are several intracellular components involved in receiving mechanical 
signals and eliciting a response (Fig. 7.1). A feature that is particularly important to 
mechanical sensing is contractility; all cells have a network of cytoskeletal proteins 
(actin, microtubules, intermediate filaments) that aid in cell structure and mobil-
ity [17]. Cytoskeletal contractility creates a balance between intra- and extracel-
lular forces acting on the cell, and thus is important for cells to be able to respond 
to forces in the surrounding microenvironment [25]. This balance exists so that 
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mechanical forces in the microenvironment and internal cellular tension can work 
together to regulate cell behavior, evident, for example, in changes in fibroblast 
proliferation when matrix stiffness and actomyosin contractility are decoupled [26]. 
Moreover, external mechanical stimuli help define the state of the cytoskeletal 
components through various pathways. For example, it has been shown that tensile 
forces regulate the expression of α-smooth muscle actin (αSMA), a gene important 
for cytoskeletal contractility, in osteoblasts [27], and that cytoskeletal tension in 
fibroblasts changes to match the stiffness of the substratum [28].

Communication between ECM and the cytoskeleton is mediated by mechanosen-
sors, proteins or structures that can sense physical changes in the microenvironment 
and translate these into chemical signals inside the cell [15]. Mechanosensors are  
diverse and exist everywhere in the body, from ears to kidneys: mechanoelectrical 
transduction (MET) channels in cochlear hair cells respond to sound vibrations to 
induce the signaling necessary in auditory sensation [29], and primary cilia in renal 
epithelia respond to fluid flow to maintain homeostasis [30]. Yet the sensing mecha-
nisms of many mechanosensors remain poorly understood.

The most well-studied mechanosensors are integrins, which contain extracel-
lular, transmembrane, and cytoplasmic domains [31]. Integrins are composed of 
α- and β-subunits that form heterodimers [32]. Different types of integrins can bind 
to various ligands present in the ECM and induce signaling to regulate a variety of 
processes including attachment, migration, proliferation, and differentiation [33]. 
Through detection of external mechanical stresses, integrins promote changes in 
cytoskeletal structure and can activate signal transduction cascades [34–36]. Integrin 

Fig. 7.1   Schematic of intracellular mechanotransduction pathways connecting the ECM to the 
cytoplasm and nucleus.
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activity is also essential for the formation of focal adhesions, which act as centers 
of mechanotransduction [37]. Focal adhesions are protein complexes localized at 
the plasma membrane that link the ECM to the actin cytoskeleton. In addition to 
integrins, focal adhesions include hundreds of proteins, the most well-characterized 
of which are talin, paxillin, vinculin, focal adhesion kinase (FAK) and Src family 
kinases, which act as signaling molecules [38]. The formation of focal adhesions is 
regulated by both external forces and cytoskeletal contractility [39].

Other intracellular components involved in mechanotransduction include G 
proteins, receptor tyrosine kinases (RTKs), extracellular-signal-regulated kinases 
(ERKs), and stretch-activated ion channels [6].

G proteins are localized at focal adhesion sites and can undergo conformational 
changes induced by mechanical stress to promote cell growth. G proteins are acti-
vated in cardiac fibroblasts in response to stretch, as well as in endothelial cells and 
osteocytes in response to shear stress [40–42].

RTKs are transmembrane proteins that dimerize to become activated, and are 
involved in integrin-mediated mechanotransduction downstream of G proteins. 
Dimerization is triggered by binding of the receptor to extracellular ligands such as 
epidermal growth factor (EGF) and platelet-derived growth factor (PDGF), leading 
to further signaling [43]. RTKs can also activate ERKs, which are important for 
gene expression and protein synthesis [44].

ERKs are kinases that play an important role in intracellular signaling, such as 
the activation of cytoplasmic and nuclear regulatory proteins. These kinases can 
be activated in response to mechanical stimuli. Shear stress and stretch have been 
shown to activate ERKs in aortic endothelial cells and pulmonary epithelial cells, 
respectively [45, 46].

Stretch-activated ion channels allow ions such as Ca2 + to move in and out of 
cells, which regulates several cellular processes. Cell stretching has been shown to 
increase intracellular levels of Ca2 + in several cell types [47, 48]. Intracellular Ca2 + 
levels are also important for the activation of other proteins in the mechanotrans-
duction signaling cascade, such as ERKs [49].

Mechanotransduction and Metastasis

The invasion of primary tumors into their surrounding tissue and subsequent meta-
static spread to other organs are among the largest obstacles to cancer treatment, 
and metastasis is the main cause of cancer-related deaths [50]. Metastasis relies on 
the ability of tumor cells to migrate from the primary tumor and form new lesions 
at distant locations [51]. Invasion and metastasis require physical interactions be-
tween malignant cells and the microenvironment, a process that inherently involves 
mechanosensing and mechanotransduction [16]. Both extracellular factors in the  
physical tumor microenvironment and intracellular factors within cancer cells con-
tribute to mechanotransduction during invasion and metastasis. Identifying how 
mechanotransduction becomes abnormally regulated in cancer cells is necessary to 
understand the mechanisms that underlie invasion and metastasis.
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Extracellular Factors Affecting Mechanotransduction  
in Tumors

The physical microenvironment within a solid tumor differs from that of normal tissue 
in several ways (Fig. 7.2): uncontrolled proliferation results in increased mechanical 
compression in a spatially restricted environment [52]; there is an increase in the 
production of ECM components (of which collagen is the most prevalent structural 
protein), which exhibit increased alignment, crosslinking, bundling, and stiffening 
[53, 54]; poorly formed blood vessels and the absence of functional lymphatics lead 
to increased interstitial fluid pressure (IFP) [155]. These changes in the extracellular 
environment can alter the behavior of tumor cells via mechanotransduction pathways, 
which are important for both invasion and metastasis. For example, mechanical com-
pression can promote invasion and metastasis [55]. Compression has been shown to 
enhance cell-substratum adhesion in two-dimensional (2D) cell culture compression 
assays [52]. Moreover, compression can facilitate invasion by increasing the release 
and activation of ECM-degrading MMPs [56]. Mechanical loading can also alter cell 
shape and motility through compression-dependent changes in cytoskeletal dynamics 
[57].

The ECM is the framework for intercellular crosstalk, adhesion, and migration 
[58]. Solid tumors exhibit increased ECM stiffness and crosslinking, and changes 
in the structural components and mechanical properties of the ECM can promote 
an invasive phenotype in cancer cells [7, 16, 59]. For example, the mode by which 
tumor cells migrate is strongly dependent on the physical properties of the ECM [60]. 

Fig. 7.2   Cartoon illustrating the physical changes in the tumor microenvironment compared to 
that of normal tissue. a Normal tissue microenvironment. The microenvironment in normal tis-
sues contains linearized blood vessels that perfuse the tissue. Lymphatic vessels are present to 
drain excess fluids and maintain fluid homeostasis. ECM proteins make up the loose connective 
framework. b Tumor microenvironment. Poorly formed blood vessels leak fluid and plasma mac-
romolecules into the interstitium. Many solid tumors lack a functioning lymphatic system. There 
are larger amounts of ECM proteins that are highly aligned, crosslinked, bundled, and stiffened. In 
addition, uncontrolled proliferation of cells in a confined space results in mechanical compression.
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Changes in ECM composition and architecture also affect the distribution and activa-
tion of soluble factors (e.g., growth factors, cytokines, MMPs) that are themselves 
involved in cell behavioral changes and mechanotransduction [61]. ECM stiffness 
can promote the malignant behavior of tumor cells by increasing the expression and 
activity of adhesion receptors, thereby also activating mechanotransduction path-
ways [12]. For example, force has been shown to influence the development of focal 
adhesions since maturation of these complexes requires mechanical tension [62].

 Increased ECM stiffness also directs cell behavior by increasing external resis-
tance forces experienced by the cell [63]. Links to the ECM via integrins and focal 
adhesions can relay these stresses to the cytoskeleton, alter the balance of intracel-
lular forces, and stimulate signal transduction cascades that influence cell behavior 
[7]. Moreover, increased ECM stiffness can disrupt epithelial polarity and induce mi-
gration and metastasis [64]. Cells have also been shown to migrate preferentially to 
regions of increased ECM stiffness via mechanotaxis/durotaxis [65, 66]. Finally, the 
crosslinking of ECM by lysyl oxidase, which can also stiffen the matrix and induce 
fibrosis, can promote tumorigenesis via enhanced integrin signaling [58].

ECM remodeling by tumor and stromal cells is important for both invasion and 
metastasis. For example, migrating tumor cells exhibit pericellular proteolytic deg-
radation to make room for further migration [67]. Proteases such as MMPs are re-
cruited to integrin assemblies and other adhesion receptors at the leading edge of 
a migrating cell to model and degrade the ECM [68]. Cancer cells have also been 
shown to realign their surrounding ECM perpendicular to the tumor boundary, alter-
ing its architecture for improved adhesion and migration, creating diverse routes for 
dissemination [69]. Migration is mediated by several types of proteolytic structures 
enriched with F-actin, β1-integrins, and MMPs, which are key players in mechano-
transduction [70]. Single cell migration can also occur without proteolytic degrada-
tion under the mode of amoeboid migration [71]. The microscale architecture of the 
ECM, including the alignment of fibers and the location and size of pores, dictates 
the mechanisms of invasion and metastasis applied by cancer cells [72].

IFP and interstitial fluid flow have also been shown to affect the migratory and 
invasive behaviors of tumor cells [73, 156, 157]. In a three-dimensional (3D) cul-
ture model in which single tumor cells were suspended in ECM, fluid flow was 
shown to increase the percentage of migratory cells as well as their speed [73]. In a 
similar study, interstitial fluid flow was shown to result in the upstream migration 
of cancer cells as a result of asymmetry in matrix adhesion stresses needed to bal-
ance drag from fluid flow [74]. The stresses induced by flow created a gradient of 
integrin activation across the cells. Components of focal adhesions, including FAK, 
paxillin, and vinculin, localized at the upstream side of the migrating cells.

Intracellular Factors Affecting Mechanotransduction  
in Tumors

It is well known that changes in mechanotransduction promote invasion and 
metastasis [75]. The intracellular factors affecting mechanotransduction pathways 
in tumor cells may be altered in response to changes in the tumor microenvironment, 
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or to genetic mutations and changes in gene expression within the tumor cells. 
Intracellular mechanotransduction can, in turn, lead to changes in gene expression 
to promote invasion and metastasis.

Cytoskeletal reorganization is important for changes in cell shape and motility, 
and therefore migration and metastasis [16]. Cytoskeletal tension is primarily 
regulated by ERKs and the Rho family of small GTPases. One effector of Rho is 
Rho-associated kinase (ROCK), which regulates actin cytoskeletal contractility via 
myosin light chain (MLC) phosphorylation [64]. Rho activity has been shown to be 
elevated in some tumors, though decreases in its activity have also been reported 
[76, 77]. Cytoskeletal tension is also affected by the mechanical properties of the 
ECM, such as stiffness and crosslinking [7]. Increased matrix stiffness promotes the 
clustering of integrins and the formation of focal adhesions, in addition to increas-
ing activation of FAK and ERK, and enhancing ROCK-mediated cytoskeletal con-
tractility [64]. ROCK is also involved in the disruption of adherens junctions and 
moving the tail end of the cell behind the leading edge to assist in cell locomotion 
[78–80]. Moreover, cell migration involves the extension of membrane protrusions 
resulting from the cycling of actin polymerization and depolymerization, which are 
regulated by Rho GTPases via the cofilin pathway [81, 82].

ECM crosslinking has also been shown to result in the aggregation and clustering 
of integrins as well as enhanced signaling via phosphoinositide 3-kinase (PI3K) 
to induce invasion [58, 64]. Other components of focal adhesions have also been 
implicated in tumor progression, including Src, the activity of which has been 
shown to influence proliferation, invasion and metastasis [83, 84]. Src activation is 
required for ECM degradation during migration [85]. In 3D culture studies of breast 
tumor cells, Src activity increases the strength of cellular forces on the ECM as well 
as the duration and length of cell membrane protrusions [86].

Whereas some cells in the tumor become stiffer, metastatic cells are more 
deformable and exhibit reduced cytoskeletal stiffness [87]. Lower levels of integrin 
expression along with decreased adhesion to the ECM have been associated with 
oncogenic transformation [88, 60]. This increased deformability is correlated with 
enhanced metastatic potential. For example, enhanced deformability enables meta-
static cells to move through tight spaces, such as between endothelial cells, during 
intravasation and extravasation [89].

In addition to regulating the cytoskeleton and associated proteins, mechanotrans-
duction can lead to gene expression changes that promote invasion and metastasis. 
Cancer cells undergo a variety of genetic mutations and gene expression changes 
during tumor progression, which can affect their interactions with the microenvi-
ronment and subsequent mechanotransduction. Mechanotransduction itself is one 
source of changes in gene expression in cancer cells. A major way that mechano-
transduction can affect gene expression is via the epithelial-mesenchymal transition 
(EMT). EMT, in which epithelial genes are downregulated and mesenchymal genes 
are upregulated, is thought to be an important mechanism in both invasion and 
metastasis [90, 91]. ECM stiffness has been shown to promote EMT, through which 
cancer cells acquire a migratory phenotype via a variety of pathways, some of which 
include key players in mechanotransduction, such as RTKs [92]. In one pathway, 
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EMT results from stiffness-mediated localization and signaling of Rac GTPases 
downstream of MMPs [93]. Mechanical stress and matrix rigidity can also induce 
EMT downstream of TGF-β [94, 95]. Furthermore, the activation of Rho GTPases 
is thought to contribute to EMT via the loss of adherens junctions between cells and 
the gain of mesenchymal characteristics [96].

Induction of EMT in tumor cells, which affects cytoskeletal organization and 
cell-cell and cell-matrix adhesions, can also alter how the cells sense exogenous 
forces, and therefore their responses to those forces [97, 98]. The downregulation of 
epithelial keratins results in reduced cytoskeletal stiffness and greater cell deform-
ability, directly influencing the metastatic potential of tumor cells [99]. In addition 
to being more deformable than non-metastatic cells, metastatic cells also lose their 
anchorage dependence [100, 101]. Anoikis, or apoptosis induced by the loss of ad-
hesion to the ECM, is suppressed in metastatic cells, allowing them to migrate and 
traverse through the bloodstream to distant organs [102, 103]. Anoikis is believed 
to be mediated by integrin signaling [104]. The activation of integrins and their 
associated proteins, including FAK and integrin-linked kinase (ILK), can suppress 
anoikis, indicating that mechanotransduction and apoptotic pathways are linked 
[105]. EMT can also suppress anoikis [106]. In particular, the downregulation of 
E-cadherin can protect cells against anoikis [107]. It is clear that several extracel-
lular and intracellular components of mechanotransduction are altered in tumors, 
which promotes progression to invasive disease. Mechanotransduction, it seems, is 
another mechanism that can be hijacked to support malignant transformation.

Mechanotransduction and Genomic Instability

The term genomic instability (GIN) broadly describes the inability of a cell to pass 
on a copy of its DNA with fidelity. GIN can manifest itself in several ways, each the 
result of replicative stress caused by errors in DNA replication or the DNA damage 
response [108]. Microsatellite instability is the expansion or contraction of oligo-
nucleotide repeats and results from mutations in mismatch repair genes [109, 110]; 
nucleotide excision-repair-related instability results from an impaired ability of the 
cell to remove and replace damaged nucleotides [111]; and chromosomal instability 
is a change in the structure or number of chromosomes, which typically occurs as a 
result of errors in DNA replication or mitosis [112, 113].

GIN is a defining feature of cancers, and is believed to be the driving force  
behind tumor progression. Various errors in DNA replication or repair processes 
lead to an abnormal genotype that continues to change with each generation of cells. 
As a result of GIN, tumors that originate from the same tissue and cell type can 
have wildly varying genetic profiles [114]. This intertumor heterogeneity, as well 
as subclonal heterogeneity within a single tumor, has been largely attributed to the 
Darwinian characteristics of cancer; that is, the evolution and adaptation of a cancer 
clone in response to external selective pressures [115]. Ultimately, this results in the 
acquisition of survival-enhancing features that allow a cancer to develop.
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The local microenvironment is one source of pressure that results in GIN [116] 
and increased survival. Mouse embryonic stem cells exposed to radiation develop a 
high frequency of mutation in vivo but not in culture, suggesting that the microenvi-
ronment of the cells contributed to their development [117]. More specifically, both 
physical features of the tumor microenvironment as well as onslaughts by external 
agents have been shown to increase the frequency of mutation, thus increasing the 
chances that one of these mutations will affect maintenance of genomic integrity. 
Hypoxia is one hallmark characteristic of the tumor microenvironment known to 
play a role in promoting GIN. Hypoxia induces an elevated frequency of mutation 
in tumorigenic mammalian cell lines [118]. Similarly, exposure to heat and serum-
starvation increases mutations in mouse mammary carcinoma cells [119]. Little is 
known about how GIN may arise from mechanical aspects of the microenviron-
ment; the following describes a body of work that supports this idea.

Mechanical Forces Affect Mitosis  
and Cell Cycle Progression

One risk factor for the development of GIN is an increase in cellular proliferation, 
and hence the chance for DNA copy errors to arise. Recently, the mechanical prop-
erties of the microenvironment have been considered a major factor in its influence 
on cell behavior, specifically the regulation of cell cycle progression and mitosis 
and subsequent maintenance of the genome. Several studies have shown that modu-
lating mechanical forces acting on cells can affect proliferation: mechanical stretch 
can reduce proliferation of podocytes [120], enhance differentiation and reduce 
proliferation of preadipocytes [121], and in endothelial cells, directed mechanical 
forces (specifically, shear and stretch) promote homeostasis but non-uniform forces 
can result in sustained pro-inflammatory and proliferative signaling [122]. These 
effects can be mediated by cell-cell contact, such as through VE-cadherin in endo-
thelial cells [123].

The adhesion of a cell to its surroundings can alone induce changes in prolif-
eration. Micropatterning techniques have been used to isolate the effects of cell 
spreading and cell-cell junctions from the effects of substratum adhesion on cell 
behavior. Such studies have revealed that E-cadherin is sufficient to induce epithelial 
cell proliferation via Rac1 signaling, and both proteins are required for cell-cell 
contact-dependent proliferation [124]. Similar findings hold for endothelial or 
smooth muscle cells via PI3K signaling [125]. Cytoskeletal structure and associated 
signaling have also proven to be important in cell-cell adhesion-mediated prolif-
eration, based on studies regarding the role of VE-cadherin in vascular endothelial 
cells [126]. Additionally, simply varying the nature of the substratum also affects 
proliferative behavior. The basement membrane interacts differently with normal or 
cancerous epithelial cell lines, affecting growth and differentiation [127].

There is also evidence that mechanotransduction can influence various aspects 
of mitosis, and thus the segregation of the genome into daughter cells. Physical 
features of the microenvironment are one avenue of mechanical influence on 
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mitosis. For example, in HeLa cells (human cervical cancer cells), retraction fibers, 
which bind mitotic cells to the substratum, exert forces on the cell that dictate the 
orientation of the spindle during mitosis. This is mediated by regulation of the sub-
cortical actin network [128]. Another study in HeLa cells similarly showed that 
the spatial distribution of ECM proteins helps determine the axis of division by 
regulating actin dynamics [129].

It would follow from these studies that mechanosensors and other intracellu-
lar mechanotransduction machinery are involved in the regulation of mitosis, and 
indeed this has been shown. Integrin-mediated adhesion is required for the cells to 
reorient the mitotic spindle parallel to the substratum [130]. Here again, cytoskeletal 
components are key communicators. G proteins and the motor protein dynein, both 
important in transmitting mechanical force, are also known to direct orientation of 
the spindle in development [131]. One can imagine that abnormal mechanical sig-
naling, common to many diseases including cancer, could disrupt mitosis in a cell 
and thus generate genomically unstable progeny.

Mechanotransduction Regulates Biochemical Cues  
That Promote GIN

One way that mechanical stimuli ultimately promote changes in cell behavior is 
through intracellular signaling pathways that conclude with control of gene tran-
scription. Genes regulated by mechanotransduction can affect a myriad of both 
normal and pathological processes in the body [14]. In the context of cancer, recent 
studies have suggested that important molecular targets of mechanotransduction 
include mitotic checkpoint genes and other cell-cycle regulators, which have long 
been associated with maintaining genomic stability [112, 132].

To discover mechanically-regulated genes associated with GIN, several studies 
have used polyacrylamide gels of varying stiffness to mimic the mechanical prop-
erties of the ECM, and thus determine the effects of substratum stiffness on cell 
behavior in culture [133]. Recent findings from these experiments show that the 
transcription factors YAP (Yes-associated protein) and TAZ (transcriptional coacti-
vator with PDZ-binding motif), which have implications in growth, proliferation, 
and differentiation, become activated in response to cytoskeletal tension and cell 
spreading induced by a stiff substratum [134]. In human mammary epithelial cells, 
expression of tumor suppressor phosphatase and tensin homolog (PTEN) is reduced 
in the presence of microRNA miR-18a, which is modulated by ECM stiffness [135]. 
PTEN is antagonistic to PI3K, a protein involved in many pathways important for 
cell growth and survival that promotes cancer when misregulated [136]. Polyacryl-
amide gels were also used to show that matrix rigidity induces integrin clustering 
in mammary epithelial cells, which induces the formation of focal adhesions and 
generates cytoskeletal tension. This in turn activates ERK and enhances EGF-
dependent pathways that activate ERK, which is known for its involvement in cell 
cycle regulation [137, 64].



A. K. Simi et al.150

Other cell cycle-regulators are activated by adhesion to or disruption of the sub-
stratum. The protein p38 is best known for its role as a tumor suppressor, but also 
regulates mitotic entry and the spindle assembly checkpoint [138], and negatively 
regulates cell proliferation through a reactive oxygen species (ROS)-mediated re-
sponse to stress [139]. When mammary epithelial cells lose adhesion to the substra-
tum, p38 is activated and can induce apoptosis [140]. NM23-H1 is another protein 
associated with growth arrest, and this function was shown to be correlated with 
basement membrane assembly in human breast cancer cells [141].

Aside from the effects of mechanically-regulated gene transcription, cytokines 
and other signaling factors that contribute to cancer progression are often triggered 
by mechanical forces, and can induce GIN. For example, lung cancer cells show 
an increased production of ROS in response to shear stress [142]. ROS are well 
known to promote genetic mutations and cancer progression [143]. Furthermore, a 
xenograft of human skin overexpressing bFGF (in a cocktail with stem cell factor 
and endothelin-3) causes replication stress [144], the major source of GIN [108]. 
As previously described, bFGF is regulated by shear stress and hydrostatic pressure 
[23, 22].

Restructuring of the Stroma Results in GIN

In addition to signaling mediated by mechanosensors, cells can communicate with 
the microenvironment through various soluble factors that serve to restructure the 
surrounding stroma. In cancer, misregulation of these proteins has been linked to 
GIN. MMPs make up one class of proteins that remodel the ECM. Overexpression 
of MMPs can induce cell cycle progression, activate genotoxic pathways, and inhibit 
cytokinesis [145]. Furthermore, cells overexpressing MMPs often exhibit patterns 
of genomic irregularities [146]. The stroma is also heavily remodeled during the 
formation of new vasculature. Both cyclic and constant static stretch of endothelial 
cells increase the expression of vascular endothelial growth factor (VEGF) receptor 
and promote VEGF-induced proliferation, vasculogenesis, and angiogenesis [147]. 
VEGF has been shown to regulate the axis of division in endothelial cells, poten-
tiating GIN [148]. Thus, through restructuring of the stroma, in addition to control 
of the cell cycle and associated proteins and cytokines by external forces, GIN is 
mediated by mechanotransduction in cancer cells.

Synopsis and Outlook

Aberrant mechanotransduction is a major contributor to tumor progression, metas-
tasis, and GIN. Both mechanosensing and subsequent intracellular signaling alter 
properties of the cell that can lead to malignant transformation in cancer. Mechano-
transduction is therefore important to study in order to understand the progression 
of this disease. Developing improved 2D and 3D cell culture models to mimic 
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the tumor microenvironment will enable us to determine the effects of abnormal 
mechanotransduction in cancer progression. Beyond experimental models, compu-
tational models can characterize the effects of mechanical stretch on cell behavior 
[121]. Others begin to account for intratumor heterogeneity when predicting 
therapeutic response [149]. However, current computational models cannot cope 
with mutational frequency of cancer cells, and thus there is a disconnect between 
investigations of the causes and consequences of this feature.

Although many of the proteins involved in mechanotransduction are known (e.g. 
integrins, cytoskeleton, myosins, kinases), the precise mechanisms by which a cell 
perceives the mechanical information of its environment remain unclear [150]. In 
addition, mechanical forces in the microenvironment are known to affect the cell 
cycle, and abnormal expression of cell-cycle regulators can result in GIN [132]; 
however, a clear mechanotransduction pathway linking these two events has not 
been elucidated. Similarly, current knowledge on the mechanosensing capabilities 
of stem cells is limited; verifying which forces, molecular pathways, and mecha-
nosensing proteins are most important in directing construction of the stem cell 
niche and stem cell differentiation could lead to clinical applications (for example, 
targeting cancer stem cells) [151, 152].

Components of mechanotransduction pathways are starting to be considered as 
potential therapeutic targets. For example, it has been shown that the disruption of 
Rho or ERK signaling results in a reduction of cytoskeletal tension that leads to a 
decrease in tumor cell proliferation and the repression of malignant progression 
[16, 64]. Targeting Src activity could reduce proliferation, invasion, and metastasis 
[153]. Restoring anoikis response might curb metastasis [154], and the inhibition 
of collagen crosslinking and integrin signaling might reduce invasion. In addition, 
the mechanical properties of isolated metastatic cancer cells could be diagnostic 
indicators for prognosis. As we broaden our current understanding of mechano-
transduction as it relates to both normal cell functions and disease, we will be able 
to integrate this knowledge into a synergistic treatment strategy for cancer.
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