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a b s t r a c t

The CancerGrid approach to software support for clinical trials is based on two principles:
careful curation of semantic metadata about clinical observations, to enable subsequent
data integration, and model-driven generation of trial-specific software artefacts from a
trial protocol, to streamline the software development process. This paper explains the
approach, presents four varied case studies, and discusses the lessons learned.

© 2013 Elsevier B.V.

1. Introduction

1.1. Background

Randomized controlled trials are considered to be the ‘gold standard’ for experiments in medicine. They provide the
most reliable evidence supporting or refuting a scientific hypothesis, such as that ‘treatment X curesmore patients suffering
from disease D than does treatment Y ’. An experiment is designed: treatment regimes X and Y will be specified; patients
suffering from disease Dwill be recruited; recruits will be stratified into groups with similar relevant characteristics, based
on factors such as age, gender and lifestyle; patients within each group will be allocated at random to treatment X or
treatment Y ; the resultswill be analysed to determinewhether or not the difference in effect of the treatments is statistically
significant.
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From a software point of view, a clinical trial is largely an exercise in datamanagement: observations have to be specified,
collected, recorded, integrated, and analysed. But the software engineering aspects of setting up and running a clinical trial
are not trivial. Two particular problems that we will address in this paper involve data integration and tool generation.

The data integration problem occurs because medical researchers want to be able to combine the results of multiple
trials, a process known as meta-analysis. It is often the case that a single trial in isolation does not have adequate statistical
power to yield a robustly significant conclusion. Nevertheless, if sufficiently many trials have been conducted, investigating
sufficiently similar hypotheses and collecting sufficiently similar data, it may be possible to pool the results to greater effect.
In other situations, the meta-analysis aims at evaluating new hypotheses that are formulated long after the completion of
the trials that originally collected the data involved—in this case, data from trials investigating quite different hypotheses
may be integrated.

Either way, for meta-analysis to be possible, it is necessary to capture and curate metadata expressing the ‘semantics’
of the data—only then is it possible to determine whether data collected in different trials are commensurate, and if so,
how to relate them. For example, when measuring blood pressure, it is not enough to record a pair of numbers, or a pair
of pressures, or a pair of measurements in mmHg, or even to indicate that these represent systolic and diastolic pressure.
It is also necessary to know how that data was collected (at rest, or after five minutes on a treadmill?), and maybe factors
such as who collected it (in the clinic by a professional, or at home by the patient?) and how recent and reliable it is. This
semantic metadata is an essential part of the context of the data, and logically forms part of the model of the trial, alongside
more syntactic metadata such as the name of the trial and the types of data items.

As for tool development, current standard practice in clinical trials management is to pass a textual document containing
the trial protocol over to database programmers in the clinical trials unit, or to consultants from a trials management
software provider,whowill use it as guidance inmanually configuring an informationmanagement system for this particular
trial. This practice causes numerous problems. Firstly, it induces delays: it is usually the case that some to-ing and fro-ing is
needed between the database programmers and the medical researchers to get the details right; but the medics are often
too busy to respond immediately, and it is not uncommon for the trial to have to start on paper because the software is
not ready. Secondly, it is costly. This is not such a problem for a big ‘phase III’ trials operated on behalf of pharmaceutical
companies pursuing regulatory approval: the study will have thousands of participants and a stable design, so the software
development will form only a small proportion of the overall cost, and is likely to be recouped in sales over the lifetime
of the drug. However, it is a problem for early-phase exploratory studies and late-phase post-approval studies: the former
are much smaller, more dynamic and inherently risky, as animal models are an unreliable predictor of efficacy in humans;
the latter are typically funded by charities, governments and NGOs in academic settings on a tight budget. Even then, many
promising drugs are not brought to market because the return on the drug outweighs the cost of approval. Thirdly, it is not
uncommon for an early-phase trial protocol to undergo changes during the execution of the trial, requiring adjustments to
software components of the associated trial management system. Current practice is to implement these changes through
manually modifying the underlying code, running the risk of introducing software bugs when the system is in production
use. And finally, bespoke database design on a per-trial basis is unlikely to promote the consistency and interoperability
needed for meta-analysis.

All four of these generation issues could be addressed if the development of the software tools needed to support trial
execution could be automated. Fortunately, there is essentially enough information in the trial protocol – which needs to be
written anyway, not least for the purposes of regulatory approval – to completely determine the relevant software artefacts,
either from scratch or by configuring more generic components. If the protocol were written in a more structured format –
that is, as a formal model, rather than merely a textual description, of the trial – then both the prose and the code could be
generated from it by suitable processing, and any adjustments required because of changes to the trial protocol can bemade
without risky manual intervention at the level of code. Moreover, as we have seen, the annotation of the data descriptions
in the trial model with semantic metadata will make that model doubly useful, as a basis for supporting meta-analysis in
addition to being a specification for a software system.

In other words, clinical trials management is crying out for a model-driven approach.

1.2. The CancerGrid approach, in a nutshell

The CancerGrid project [1] was initiated in order to address the twin problems of interoperability and generativity in
clinical trials, taking a model-driven approach to the development of trials management tools. It was funded in the first
instance for three years from 2005 by the UK Medical Research Council, with the involvement of five UK universities:
Cambridge (specializing in oncology), Oxford (software engineering), University College London (semantic modelling),
Birmingham (clinical trials management), and Belfast (telemedicine). Oxford University and the Cancer Research UK
Cambridge Research Institute have been continuing the work since the original project ended in 2008.

The CancerGrid approach addresses the two problems of data integration and tool generation, via the collection and
management of metadata in the first case, and model-driven engineering in the second—improving the science through
greater effectiveness, and reducing drudgery through greater efficiency.

Regarding the metadata, much of the interoperability requirement pivots on some kind of consensus on – or at least,
machine-processable documentation of – the common data elements being recorded. There can be nomagic here: if two trials
have collected incompatible data, or one of themhas provided insufficientmetadata to allow compatibility to be determined,
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then their results cannot usefully be integrated. On the other hand, it is very difficult to arrange for prior universal agreement
on compatible data elements across a large, heterogeneous, and long-lived community. The approach to this dilemma that
we have taken on the CancerGrid project is realist rather than idealist. We have developed tools to support communities
in deciding on, recording, and disseminating data standards; but there is no need for all parties to commit to using the
same standard. Data elements (for example, ‘blood pressure on induction into study, measured at rest’) are curated in the
metadata registry, and referenced in the trial protocol, and the metadata reference is preserved in the software artefacts
generated from the protocol – data entry forms, database schemas, spreadsheets, web services, and so on – ensuring that all
the data maintain their semantic annotations throughout their journey through the system. We discuss this aspect of the
approach in depth in Section 2.

Regarding model-driven engineering, an early activity of the CancerGrid project was the reification of the Consolidated
Standards of Reporting Trials (CONSORT) statement [2] as a domain model of clinical trial design and execution. The scientist
designing a trial follows the guidelines in the CONSORT statement to construct a model of the trial—we therefore describe
the CONSORT domain model as ametamodel of clinical trials, and the design of an individual trial as amodel of that trial. We
have developed tools to generate the software artefacts needed to execute a trial from the model. We discuss our approach
to model-driven engineering in Section 3.

2. Metadata-based data integration

2.1. Meta-analysis

As we have seen, meta-analysis is a crucial part of present-day medical research. For example, consider the drug
Tamoxifen, used for the treatment of certain types of breast cancer. It was approved for use from 1980, but the available
evidence from clinical trials for its efficacy was mixed throughout the 1980s, and it was not until a decade later that a meta-
analysis [3] of the results from these trials, conducted by the Oxford-based Early Breast Cancer Trialists’ Collaborative Group,
produced useful results. As Richard Gray, a member of the EBCTCG secretariat, put it: ‘‘The drug Tamoxifen – an oestrogen
blocker that may prevent breast cancer cells growing – was the object of forty-two studies world-wide, of which only four
or five had shown significant benefits. But this did not mean that Tamoxifen did not protect against breast cancer. When we
put all the studies together it was blindingly obvious that it does’’ [4]. This meta-analysis allowed researchers to identify the
subset of the population responsive to the drug, and the optimum treatment regime. It yielded evidence that changed UK
clinical practice, reducing mortality from operable breast cancer by 24%.

On the other hand, meta-analysis is no silver bullet: it does not always produce useful results, even when there is data
from many trials to draw upon. Consider the case of the TP53 gene, which may be a useful prognostic marker allowing
the prediction of outcomes to therapy for ovarian cancer in individual patients. One systematic review of 75 clinical
studies, involving 8331 patients, could draw no useful conclusions: most of the study metadata was missing, and results
were reported in insufficient detail to justify comparison. Even some less ambitious meta-analyses have stumbled over
inconsistent study design and reporting: ‘‘it remains of the utmost importance to reach a consensus about guidelines for
the design, conduct and analysis of such studies in ovarian cancer’’ [5], and ‘‘the data demonstrate the importance of
methodological standardization, particularly defining patient characteristics and survival end-point data, if biomarker data
from multicentre studies are to be combined’’ [6].

2.2. Multiple perspectives

In an ideal world, perhaps, all researchers working in the same field would agree in advance all the details of the
nature and the format of the data they will collect—the ‘‘guidelines for the design, conduct and analysis of studies’’ and
‘‘methodological standardization’’ referred to above, but also the data formats to beused, the storagemedia, communications
protocols, consent criteria, and any number of similar stumbling blocks to data integration. But pragmatic concerns rule
out such idealism: local considerations, historical accidents, political expediency, and personal preference all lead quite
reasonably and rationally to differences in approach.

It is not even clear that complete uniformity is to be desired, anyway. The notion of ‘the same field of research’ is getting
more inclusive all the time; connections arise between what were formerly seen as separate diseases, and current trends in
translational medicine are bringing research from other branches of the physical and social sciences to bear on clinical
practice; there will always be disciplinary borders to cross, and consequential procedural differences to reconcile. And
besides, scientific understanding and best practice evolves, and guidelines that were appropriate for an earlier age may
no longer be sufficient today; there will always be temporal borders between ‘old’ and ‘new’ too. Absolute uniformity is
surely an unrealistic dream.

In fact, the more that science lifts its ambitions towards transdisciplinarity, towards internationalism, towards grand
challenges, themore it has to accommodate divergent and sometimes inconsistent perspectives—themore it has to abandon
the simplicity of modernism, and embrace postmodernity. Simplifying to the extreme, postmodernity has been defined as
‘‘incredulity towardsmetanarratives’’ [7], the relinquishing of the expectation of a single universal framework for discussion.
In particular, as the scope of our information systems extends beyond a single program run by a single person on a single
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Fig. 1. Associations between 11179 metadata element classes.

machine to encompass broader collaborations across space, time, and discipline, we have to accept that ‘‘no requirements
can be both complete and consistent: you have to pick one’’ [8]. This is the battle cry of the postmodern programming
movement,which ‘‘rejects overarching grand narratives. As a result, it favours descriptive reasoning rather than prescriptive.
Rather than working top down from a theory towards practice, postmodern programming theories are built up, following
practice. Moreover, theory follows practice on a case-by-case basis’’ [8].

2.3. Metadata registries

To enable meta-analysis, then, scientific communities need to deal with metadata describing the design, execution,
and analysis of the studies they conduct. A small, coherent, homogeneous community may find it helpful to produce a
shared catalogue of standard metadata to draw upon: aspects of trial documentation (such as name, unique identifier,
funding source, principal investigator); standardized clinical observations; reusable sections of forms (such as for subject
identification); and so on. A community-wide shared catalogue of this form can be very helpful in promoting data standards,
greatly facilitating data integration andmeta-analysis. But when the community gets too large or too diverse to converge on
such a shared catalogue, it is just as important to allow for local practice and special needs, maintained in separatemetadata
registries.

ISO/IEC11179 [9] is a standard formetadata registries, envisaging a distributednetwork ofmetadata databases describing
data assets in terms of ‘metadata elements’. Thesemetadata elementsmight be used retrospectively, to catalogue an existing
dataset, or prospectively, in the construction of a data model for a new dataset. Part 3 (of 6) of the standard sets out a
metamodel formetadata registries: ametadata registry is defined as a collection ofmetadata elements,which are subdivided
into four types—data elements, value domains, conceptual domains, and data element concepts.

The metamodel is broadly split into a representation layer, which describes how observations and values in datasets are
encountered, and a conceptual layer, which organizes content according to an overall notion of the domain of the registry.
The metamodel declares a number of associations betweenmetadata items: a data element shall be associated with exactly
one value domain and one data element concept; a value domain could be declared in the absence of a data element, but
can be shared by many, and is also associated with at least one conceptual domain (see Fig. 1).

Roughly speaking, the left-hand column of Fig. 1 shows ‘questions’, the right-hand column ‘sets of valid answers’; the
top row is the conceptual layer, and the bottom row the representation layer. For example, the data element ‘body mass
in kilograms, on entry into the study’ might be associated with the value domain ‘mass, to the nearest kilogramme’, the
data element concept ‘body mass’, and the conceptual domain ‘mass’; a second representation-level data element ‘body
mass in grams, after treatment’ might be associated with value domain ‘mass, in grams’, and with the same two elements
at the conceptual level. Different representation elements associated with the same conceptual element are intended to be
commensurate: thus, whereas the value domain specifies the units of measure, the conceptual domain specifies only the
dimensionality.

In providing a general metamodel for elements of data models, ICE/IEC11179 occupies an important place in model-
driven engineering systems: it offers an extensible source of reusable metadata that can be used to embellish UML, W3C
XML Schema, and relational models, achieving more complete generation of system artefacts—particularly user interface
elements, where choice of control groups, labels on forms, and column headings can be constrained or inferred from
metadata recorded in the registry. Eventually ISO/IEC11179 will be accompanied by standards describing the registration
of models in the ISO/IEC19763 series on metamodelling; however, these standards are at an early stage of development,
and are not yet well integrated with ISO/IEC11179.

To support recording and curating of metadata, standardized where possible but customized where necessary, we have
developed the CancerGrid Metadata Registry (cgMDR) [10]. The cgMDR is robust enough for widespread use – it is currently
being adopted by the US National Cancer Institute (http://www.cagrid.org/display/MDR/), for example – while still being
lightweight enough for individual trials units to install their own copy to support local variations. It is the first free and
open-source implementation of the ISO/IEC11179 standard (NCI caBIG, the US National Cancer Institute Cancer Biomedical
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Informatics Grid, have an open-source ISO/IEC11179 metadata repository caDSR [11], but it depends on having an Oracle
license).

3. Model-driven software development

3.1. The CONSORT Statement

The CONSORT (‘consolidated standards of reporting trials’) statement [2] is intended to capture best practice in reporting
randomized controlled clinical trials. It specifies a checklist of twenty two items, such as title and abstract, eligibility criteria,
interventions, sample size, randomization protocol, adverse events, and so on. It also specifies a workflow of trial execution,
depicting the passage of participants through the lifecycle of a trial—enrolment, intervention allocation, follow-up, and
analysis. Retrospectively, CONSORT promotes understanding of a trial’s design, conduct, analysis, and interpretation in order
to assess its validity, through transparency on the part of trial authors. Prospectively, it also guides authors in how to set up
a trial to maximize the utility of the results.

CONSORT has become a widely adopted standard in the reporting of clinical trials; for example, the International
Committee of Medical Journal Editors’ manuscript submission requirements [12] state that ‘‘Articles on clinical trials should
contain abstracts that include the items that the CONSORT group has identified as essential’’, and the Nature group’s policy
on availability of data and materials [13] states that ‘‘Authors reporting phase II and phase III randomized controlled trials
should refer to the CONSORT Statement for recommendations to facilitate the complete and transparent reporting of trial
findings. Reports that do not conform to the CONSORT guidelines may need to be revised before formal review.’’

The CONSORT statement was originally published in 1996 [14]; it was revised in 2001 [15], and again in 2010 [16]. The
CancerGrid trials metamodel was based on the 2001 version, the latest one at the time. However, the revisions have all been
minor: it would be a simple exercise to revise the CancerGrid metamodel to match the current version of the statement. In
the interests of historical accuracy, the discussion in this paper is based on the 2001 version.

3.2. Trials metamodel

The first step in any model-driven engineering endeavour is to establish a domain metamodel, circumscribing the area of
applicability. We call it a ‘metamodel’, because its instances are models—each instance describes a particular application,
such as a clinical trial, and forms the basis of the generation of software artefacts customized to support that particular
application.

Scoping thismetamodel appropriately is essential: too broad, and it becomes impossible to properly address the variance
in an automatic manner; too narrow, and the toolchain is likely to be too concrete, and too dependent on specific instances,
missing opportunities for wider application.

But just as important is the effort spent in ensuring that themetamodel accurately captures what is important to domain
specialists. In that respect, CONSORT was extremely valuable to the CancerGrid project: experts in designing, conducting,
and reporting clinical trials have devoted huge amounts of time and energy into characterizing best practice in their domain,
explaining the rationale behind their modelling decisions [17], and obtaining buy-in and support from their community. It
was immediately clear that the CONSORT statement ought to form the basis of the CancerGrid domain metamodel.

Fig. 2 shows the CONSORT checklist of items to includewhen reporting a randomized trial.We expressed this checklist as
a UML class metamodel of well-designed trials. This metamodel is quite elaborate, but is partitioned into packages defining
trial description, patient eligibility, randomization, treatments, case report forms (CRFs) and form controls, and security
policy. A fragment of the metamodel representing form controls is shown in Fig. 3. This aspect of the CancerGrid philosophy
is described in more detail elsewhere [18].

In the terminology of the Object Management Group’s Model-Driven Architecture [19], a particular clinical trial is a real-
world system, at level M0; the trial protocol is a model of that system, at level M1; our UML rendition of the CONSORT
statement is a domain metamodel, at level M2; and the metametamodelling framework at level M3 is not formalized.

3.3. Trial modelling

In the next step, a scientist planning a clinical trial designs the trial protocol—in terms of aspects such as eligibility criteria
and interventions covered by the CONSORT statement, togetherwith basic ‘Dublin Core’metadata items such as title, author,
and date. Traditionally, they would do this by writing a prose document describing the experiment they intend to conduct,
following the guidelines in the CONSORT statement. This document might form the basis of an application to an ethics
committee for permission to conduct the trial, and of a proposal to a funding body to obtain the resources needed to support
the trial.

But given a rigorous metamodel, it is possible to do better than this. It is straightforward to automatically export the
domain metamodel to yield a data schema for domain models; then the scientist would describe their planned experiment
by producing a data object – amodel of the trial – that conforms to the data schema. This experimentalmodelwill necessarily
conform to the CONSORT guidelines, which cannot be said for the prose document written in the traditional way.
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Fig. 2. Checklist of items to include when reporting a randomized trial [15].

Depending on the notation in which the metamodel is expressed, the scientist can be given considerable assistance in
producing their trial model. In Section 4.1 below, we present a worked example in which the metamodel is exported as
an XML Schema, and the ‘trial designer’ application that the scientist uses is simply Microsoft InfoPath configured with
the metamodel. Designing a trial amounts to completing the forms that InfoPath presents. The result is an XML document
modelling this particular trial that, by construction, conforms to the schema and to the CONSORT statement.

3.4. Model-driven generation

Once the scientist has produced a model of the trial that they intend to conduct, in a suitably structured notation, it is
possible to generate from that model a collection of software artefacts to support the trial. These include forms for data
collection, web services for validating and storing completed forms and for randomizing allocation of patients to treatment
arms, blank spreadsheets for analysing data, textual documents for reporting, workflowmonitors for guiding trial execution,
and so on.

Mostly, these software artefacts are themselves just various forms of structured data, and are readily generated by
transforming the trial model. For example, blank forms, reports, and workflow models might be represented in dialects
of XML. Services do not directly fit this pattern; for these, one can write a generic service (for example, for randomization)
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Fig. 3. UML class model of the form control package of the CancerGrid metamodel.

once and for all, and generate a trial-specific configuration file automatically from each trial model. Some concrete examples
are given in the case studies presented in Section 4.

3.5. Trial execution

The most important of the software artefacts needed to conduct a trial turns out to be the simplest to generate: the case
report forms that are completed as the trial progresses, recording patient information and clinical observations. A natural
representation for a blank form is in terms of the data schema for the data that form is designed to collect; that might be
written in XML Schema, which is of course a structured data format, and readily generated from the trial model. Completing
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Fig. 4. The forms-based workflow of clinical trial design and execution; icons denote artefacts, and solid arrows denote transformations between artefacts.

a case report form therefore amounts to constructing a structured data object (perhaps an XML document) conforming to
the data schema for that form. Again, this process may be managed by a standard forms completion application.

An intriguing aspect of the CancerGrid approach is therefore the parallels it reveals between the ‘design-time’ and ‘run-
time’ stages in the lifecycle of a trial. In the first stage, a scientist is designing a trial protocol, following the guidelines set
out in the CONSORT statement; in the second stage, a clinician is conducting a trial, following the guidelines set out in
the trial protocol. Both cases involve instantiating a schema: the trial protocol instantiates the CONSORT class model, but it
determines schemas for data collection and reporting at significant events during the trial,which are themselves instantiated
by the clinician when entering data.

4. Case studies

4.1. Prospective data collection

As the name suggests, the original exemplars for the CancerGrid project were in cancer clinical studies, and in particular
in breast cancer trials [20–22]. But of course, the approach is not limited to cancer; a more recent application has been a
project with the Oxford Vaccines Group to study the efficacy of a paediatric pneumococcal vaccine in Kathmandu [23]. We
walk through that application here, in order to illustrate in detail the CancerGrid approach to data collection.

As discussed in Section 3.3, when the domainmetamodel is sufficiently simple and regular, constructing a domainmodel
can be as simple as completing a form. This observation is explored in depth in a recent paper [24]; we summarize that
presentation here. The general principle is one of data models as document schemas, entities as conformant documents,
authoring as form completion, andmodel transformations as schemamappings. This principle can be realized in a variety of
ways. Our current implementation uses an off-the-shelf product for form-filling—namely Microsoft InfoPath, an application
that supports the design and completion of XML-based data entry forms, forming part of the Microsoft Office productivity
suite. This has turned out to be the approach most attractive to our target audience of medical researchers and clinicians,
because they are all familiar with theMicrosoft Office interface, and they all have the software pre-installed on their desktop
computers. However, the general principles are in no way tied to this particular realization, and our earlier paper [24] also
presents an alternative implementation developed from first principles.

Theworkflow entailed by trial design and execution is illustrated in Fig. 4. The preliminary step, in which representatives
of the data community develop a domain metamodel, is discussed in Section 3.2 above; this is shown in the figure as a
UML metamodel, which is exported from the UML modelling tool (for example, Enterprise Architect) into an XML Schema
representation.

First, the medical researcher planning a trial specifies the trial protocol, using a ‘trial designer’ application. In this case,
the trial protocol is sufficiently formulaic to be specified by completing a form, and the ‘trial designer’ application is simply
a generic form-filling application (such as Microsoft InfoPath) configured with the XML Schema representation of the trial
metamodel. Fig. 5 shows a screenshot of InfoPath being used to design a case report form for recording study participant
registration; the highlighted element is the ‘study group’ (a three-way enumeration) into which the participant is placed,
and a version of the underlying XML representation of this piece of the form, heavily edited for space and readability, is
shown in Fig. 6(a).

The XML document recording the trial protocol determines numerous software artefacts relating to the trial: clinical
interventions, datasets and collection procedures, software configurations for services such as randomization and validation,
documentation, and so on. Each trial-specific artefact essentially instantiates the template for such artefacts included in the
metamodel—hence the dashed realization arrow in Fig. 4 stereotyped ‘⟨⟨instance⟩⟩’, in a slight abuse of notation. (To avoid
clutter, the only trial-specific artefact shown in the figure is themodel of a case report form. Other artefacts are also models,
but may be models of entities such as services, documents, or workflows, rather than of forms.) The specification of each
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Fig. 5. Using InfoPath to design a case report form.

artefact is obtained by traversing the XML document, extracting the corresponding parts, and transforming them into the
appropriate format: XML Schema, XSL Formatting Objects, WSDL, and so on. Traversal, extraction, and transformation is
specified as a collection of XSLT stylesheets, written once only, for all trials based on the same version of the metamodel.
In particular, the data to be collected by the clinician conducting the trial – and hence the structure of the form on which
this data is recorded – is specified by an XML schema. In the second step, the data manager in the trials unit generates all



J. Davies et al. / Science of Computer Programming 89 (2014) 126–143 135

Fig. 6. Fragments of XML representing (a) a trial model, (b) a data schema derived from the model, and (c) recorded results conforming to the schema.

Fig. 7. Form control for data collection.

these artefacts automatically, and deploys them in the unit’s web portal for access by clinicians. Continuing the example,
the XML defining the participant study group is used to generate an XML Schema for the data that should be collected; the
corresponding portion of that schema, again heavily edited for readability, is shown in Fig. 6(b).

Finally, the clinician in the unit running the trial conducts a consultation with a participant in the trial, makes some
clinical observations, and needs to record the data so obtained. The data entry application that they use to do so is just
InfoPath configured with themodel of the relevant data. Data entry amounts to completing the form that InfoPath presents;
the result is an XML document recording this event that, by construction, conforms to the appropriate schema from the
previous step, and which may be stored in an XML database for subsequent analysis and study. In the example, choices for
the participant study group are presented as a dropdown list, as shown in Fig. 7; and selection from this list results in the
creation of the XML in Fig. 6(c).

4.2. Retrospective data integration

One retrospective data analysis application of the CancerGrid approach was undertaken in the context of the Molecular
Taxonomy of Breast Cancer Internal Consortium (METABRIC) [25], a collaborative study involving five hospitals in the UK
and Canada, using molecular profiling in order to understand the clinical heterogeneity of breast cancers. The hospitals in
the consortium all use different data definitions; they often hold incomplete datasets, because of patient movements; and
record keeping and clinical procedures are likely to have changed over time during the relatively long treatment periods.
CancerGridmetadata technologies helped the researchers to accommodate this variety in a straightforward and lightweight
way.

To perform any kind of integration of heterogeneous datasets, some kind of data conversion will be necessary. For
example, in the METABRIC study, each of the five hospitals used a different enumeration as a classification scheme for
‘histological tumour type’, ranging from 15 to 33 different codes; similarly, in some hospitals the data element ‘menopausal
status at diagnosis’ was an enumeration, explicitly and directly determined by a clinician, but in others it was simply a
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Fig. 8. Using SQIV to annotate heterogeneous METABRIC datasets for meta-analysis.

boolean, inferred indirectly fromwhether the ‘age at diagnosis’ was at least 50 years. Such differences need to be reconciled
before the data can be integrated.

Of course, data transformations of this kind typically lose information; distinct classification schemes are unlikely to
match up precisely, and missing data might have to be estimated based on the data present. Crucially, what constitutes
acceptable information loss will differ from integration exercise to integration exercise. It is a fool’s errand to search for a
grand unifying data reconciliation; it is much better to allow each specific data integration exercise to specify appropriate
data mappings. Consequently, it is important that the data mappings are simple to specify and to implement—otherwise
data integration becomes too laborious. Indeed, the data mappings should be modelled in a lightweight way, and their
implementations should be generated from these models.

In theMETABRIC project,we supported themedics, clinicians, andpathologists fromeachhospital in using the CancerGrid
Metadata Repository in curating the data elements describing each field in their own data, and in each of the fields of
the minimum dataset common to the whole consortium; there were 50 and 29 of these, respectively. We interacted with
pathologists from each of the five institutions to categorize the 50 hospital-specific data elements into 33 data element
concepts; for example, the five hospital-specific data elements ‘Addenbrookes histological tumour type’, ‘Guy’s histological
tumour type’, and so on all correspond to the data element concept ‘histological tumour type’. We then used SQIV [26] – a
home-grown suite of tools supporting the standardization, querying, inference upon and validation of data corresponding
to XML schemas marked up using SAWSDL – to annotate the datasets with the common categorizations. Fig. 8 illustrates
the SQIV process. The annotation was performed by rule-based inference based on Horn clauses, using the Jena semantic
web framework [27]. This reconciliation enabled ameta-analysis over the combined and somewhat heterogeneous datasets,
amounting to about 4000 samples in total, which would have been impractical under existing manual processes.

It would be entirely straightforward to generate the relevant Horn clauses automatically from the metadata in the MDR;
tools such as ATLAS Model Weaver [28] for establishing links between models are very helpful in this kind of exercise,
because they allow the domain specialist designing each individual data integration task to say simply, directly, and precisely
which values may be considered ‘the same’ for their particular purposes. (As it happens, however, we constructed the Horn
clauses by hand, since only a handful of them were needed for this exercise.)

4.3. Data cataloguing

In clinical trials, it is important to ensure that negative results do not get buried, and to prevent experiments from being
repeated in private until the desired outcome has been achieved. To address this concern, prospective study registers are of
paramount importance [29,30]. In 2005, the International Committee of Medical Journal Editors (ICMJE) made prospective
registration a prerequisite for publication in any of its member journals; in the following month, the number of trials
registered with clinicaltrials.gov nearly doubled [31].

Traditionally, experimental registers have offered a uniform, one-size-fits-allmodel for the type of experiment registered,
and this has been a considerable success. However, with half amillion records in the Cochrane Central Registry of Controlled
Trials [32], simple browsing or Google-style search is becoming more difficult, and it becomes pressing to be able to obtain
more detailed information about the execution of the study in order to further filter results, even before finer considerations
of data compatibility aremade. As onewishes to recordmore detail about a study, each study becomes increasingly distinct,
and one needs to admit subtypes of studies to be able to properly record metadata about them. Despite requirements for
central registration, there are still a considerable number of disease-specific registries in response to these problems. Ideally

clinicaltrials.gov
clinicaltrials.gov
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one would want to see interoperation between disease-specific registries, and facilities for the easy interchange of records.
We believe the best way to support these requirements is in the development of generic registry software that can be
customized by extension to the registry model.

In the related area of longitudinal population studies, we have been able to use model-driven techniques to provide a
toolbox for the creation of a specific ISO/IEC11179metadata registry; a screenshot is shown in Fig. 9. Unlike phase III clinical
trials, which support the evaluation of a single, testable hypothesis through a clear and often simple statistical analysis, a
longitudinal population study establishes a large, interesting cohort of many thousands of people, which is recalled for a
wide variety of purposes over decades, integrating clinical, psychological and social evaluations with public records such as
those collected in schools and healthcare systems. A typical population study in the UK is the Avon Longitudinal Study of
Parents and Children (ALSPAC, or ‘Children of the 90s’) [33], which established a cohort of over 10,000 children with their
parents, and was designed to determine how an individual’s genotype combines with environmental pressures to influence
health and development. Data gathered from ALSPAC supports a wide variety of studies: in the first few months of 2012,
papers were published on the effects of dog ownership on obesity in pregnancy [34], bullying and suicide-related behaviour
in 11-year-olds [35], and patterns of alcohol abuse in adolescence [36], all based on the ALSPAC study.

Using a basic implementation of ISO/IEC11179 it is a relatively direct task to register and document the definitions of
the many variables collected and curated in a study (nearly 40,000 in ALSPAC), recording the name of the variable, a brief
description, and the value set or the applicable units. By taking the ISO/IEC11179 notion of an ‘administered item’ – an
item of metadata for which we wish to maintain provenance and exercise version control – we have been able to model
appropriate content types in UML and generate XML Schemas, XForms, specific reference document types, XML Database
Collections and menu-items to provide much of the functionality of the registry without manual coding. This facilitates the
deployment of 11179-like metadata registries, whilst ensuring compliance to the core standard.

In the UK Medical Research Council Data Support Service pilot, through which we were working with the ALSPAC and
other population health studies, the registration of metadata for population studies required the creation of new types
of content: an overall study record containing textual information about study aims, cohort, status, recruitment, contacts,
funding and data sharing policies; a ‘dataset record’ that allowed the naming and identification of sharable datasets, each
reporting a particular cross-sectional analysis of the cohort for some purpose; a timeline record that could be used to
associate particular metadata items with an appropriate Simile timeline (shown in Fig. 10, for a different study in the DSS
pilot); and a form model record that could better describe the association of variables collected in a single paper form,
where the shared datasets did not correspond directly to individual form instances. Each content type was modelled in
UML or XML Schema, and ANT scripts were used to generate successive customizations of the core registry to support the
specified functionality.

4.4. Metamodelling forms

Evidently, forms are central to structured data collection procedures: not only do they constitute the user interface to
a system, they also hugely influence the quality of the data collected, and inform its subsequent analysis. Consideration of
the nature, design, generation, and use of forms has formed a significant part of the CancerGrid work. In this section, we
summarize our work on modelling and metamodelling forms [37].

Three aspects of data quality that are particularly relevant to form design are correctness (the extent to which the values
entered correspond to the intended interpretation), completeness (the extent to which the form faithfully accommodates
the full story), and comprehensibility (the extent to which form data comes with adequate documentary metadata).
Correctness depends on the intended interpretation and possible values of each data item being transparent, so that
the person completing the form can work out how to respond. Completeness depends on a clear structure, helping the
form completer to navigate between sections, pre-populating fields with default or inferred values, and hiding irrelevant
questions and inappropriate answers. And comprehension of the results requires the form to contain links to appropriate
metadata describing the terminology and the context.

We are therefore working on a domain-specific metamodel of forms; the position paper [37] presents progress to date.
The intention is to enforce a clear separation of the concerns of internal structure, user presentation, content validation, and
semantic annotation; and to do so in a compositionalway, so that forms can be assembled froma library of form sections. The
usual benefits of modelling apply: separation of concerns allows simpler and higher-level specification of what is required;
it also supportsmultiple uses, such as documentation of a dataset, and advance planning and coordination of data collection.
Because forms are so widespread, this is an attractive domain in which to work—even modest results offer the promise of
significant returns.

Naturally, there have been numerous previous attempts to improve the quality of data capture by formalizing the process.
These attempts broadly fall into two classes: data documentation standards, such as the Data Documentation Initiative (DDI)
[38] and the Clinical Data Interchange Standards Consortium Operational Data Model (CDISC ODM) [39], and common data
capture platforms, such as OpenClinica [40] and REDCap [41].

Neither of these approaches have produced entirely satisfactory results. The data standards activity has focussed
primarily on post hoc documentation: models of forms are used to record form contents and structure, but not to generate
forms for data capture. Consequently, form modelling represents an additional burden on researchers, who may derive no
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Fig. 9. Screenshot of the DSS metadata registry.

tangible benefit themselves in terms of increased data quality and simpler reuse. Moreover, unless themodels are generated
automatically from the data, or vice versa, it is very difficult to ensure their consistency.
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Fig. 10. Screenshot of the Simile timeline for the Whitehall study in DSS.

Fig. 11. Specifying an OpenClinica form via a spreadsheet.

Conversely, although study management systems such as OpenClinica and REDCap may use form models as the basis of
form generation and deployment, these models are relatively simplistic, but nevertheless rather difficult for non-technical
domain specialists to understand (we explore an example below).Moreover, themodels are not presented as documentation
for the data captured, and are difficult to reuse outside the context of the particular study management system.

Neither the data documentation standards approach nor that of study platforms has resulted in a standard means of
recording the logical relationships between questions or question sets asked in different forms or in different studies,
except by reference to a shared data standard, data dictionary, or question bank. To determine whether observations from
two different studies are comparable for the purposes of meta-analysis, it is neither necessary nor sufficient that they are
based on the same standard question: insufficient, because the additional context provided by the form may change the
interpretation of the question, and unnecessary, because the semantic imports of two syntactically quite different questions
might nevertheless be compatible.

We have been investigating the use of OpenClinica in supporting a study of esophageal cancer as part of the International
Cancer Genome Consortium [42]. Although OpenClinica does have a forms metamodel, the mechanism for modelling forms
is rather obscure, at least to clinical researchers. Researchers provide input encoded in a spreadsheet,with entries in different
columns representing question text, answer range, value constraints, and navigation rules; Fig. 11 shows a fragment of the
spreadsheet specifying a form for the ICGC study, and Fig. 12 a screenshot of the corresponding part of the data entrywindow
that OpenClinica generates. REDCap uses a similar mechanism [41].

The problem we found is that domain specialists cannot understand the spreadsheet modelling format, and so they are
cut out of the loop when it comes to designing and commenting on a new form: many more people need to be consulted
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Fig. 12. Data entry in an OpenClinica form.

Fig. 13. Textual presentation of an OpenClinica form.

about the questions than ever need to actually use the system to enter data. To get around this problem, we produced a tool
to generate a Word document from the spreadsheet formmodel; an example is shown in Fig. 13. This has greatly improved
the turnaround speed for discussing and modifying the study, as the domain specialists working on the study find reading
and commenting on Word documents easier than learning how to interpret the spreadsheets or logging into the system to
see the forms online. Currently, the tool is simply an ad hoc translation implemented in C# and XSLT; but the plan is to use
the forms model discussed in the position paper [37] as a lingua franca, supporting translation to and from OpenClinica,
Word, and InfoPath as used elsewhere in CancerGrid.

5. Conclusions

5.1. Summary

The CancerGrid project has taken a two-pronged approach to the development of software to support clinical trials. On
the onehand, rich semanticmetadata is a necessary prerequisite for subsequent data integration; experiment designers need
to be able to record their intentions, and data collectors their actions, in such away that later users can properly interpret the
data. On the other hand, clinical trial management is ripe for a model-driven approach: the domain is rather formulaic, with
the software development following well-trodden paths, so there are good prospects for automation; and it is common for
busy experts in a wide variety of disciplines to need to be involved in design, encouraging high-level modelling rather than
low-level programming. Happily, these two aspects reinforce each other: automation in the development of software tools
makes it straightforward to propagate metadata alongside the data, preserving semantic annotations throughout analysis;
and semantic information in the model can inform and refine the consequent generation of artefacts.
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5.2. Experience

We have had seven years’ experience with the approach, in a number of different clinical contexts with various different
sets of clinical collaborators. The original CancerGrid project ran for three years from 2005. Subsequent funded projects
applying the CancerGrid approach include: Accelerating Cancer Research Using Semantics-Driven Technology [43], funded by
Microsoft Research, exploring the extension fromphase III to early-phase studies; Evolving Health Informatics [44], funded by
Research Councils UK,workingwith colleagues in the Centre for Clinical Vaccinology and TropicalMedicine at the University
of Oxford to demonstrate applicability to infectious disease control; Hospital of the Future, aiming to improve patient
outcomes through information-driven management; the Data Support Service, funded by the UK Medical Research Council
(MRC), to retrospectively catalogue the data collected in some of the MRC’s valuable long-running studies; and the Union of
Light-Ion Centres in Europe, funded by the European Union Seventh Framework Programme, to curate experimental results
in particle therapy. In addition, we have been collaborating with local colleagues on a pro bono basis. The vaccinology study
[23] discussed in Section 4.1 is one such; we were able to reduce the time taken to produce a complete set of semantically
annotated forms for the study from sixmonths to asmanyweeks—not least because a set of prototype forms could be shown
to clinical researchers with a turnaround of a few days, while the discussion of their design was still fresh.

5.3. Lessons learned

As the name of the project suggests, the original plan in 2005 was to use the then-emerging ‘grid’ technologies as a
basis for the implementation. This turned out to be impractical: the toolkits were relatively unsophisticated, requiring
considerable programming effort to duplicate the functionality of applications that were already available to our target
users; moreover, ‘grid computing’ in the sense of large-scale computational or storage clusters is not relevant to this
particular problem. The development activity was thus refocussed upon the production of software that worked to extend
and configure applications that arewidely used and availablewithin theUKNationalHealth Service (and, indeed, throughout
government and industry): specifically, Microsoft Office and SharePoint Server. The project’s focus upon the requirements of
clinical researchers, and the recognition that these requirements can be met partly through the (automated) enhancement
and configuration of office productivity applications, has led to changes in attitudes. As one teammember put it: ‘‘We used
to be hung up on open source; now we’re really focussed on open standards.’’

The call for papers for this special issue observes that ‘‘Historically model transformations and code generation from
abstract models have been among the main MDE applications. Nevertheless, they represent only a partial constituent of
the MDE application ambit [. . . ] applications emerging from the most disparate domains may reveal new directions for
development of the theory as well as lessons of transferable value for future MDE practice.’’ That observation is supported
by our experience in the CancerGridwork.Model transformations are a relatively small part of the story, and code generation
even smaller; much of the gain is obtained simply from the consistency and agility that are consequences of automation,
and none of it would be of much use without consideration of other aspects such as appropriate semantic annotation.

We have encountered a number of non-technical obstacles to the model-driven approach we espouse. For example, we
have had little traction in supporting the dynamic aspects of trial execution by exploiting a workflow model in the trial
protocol. This is partly because it is not a particular pain point for the communities we are working with—current practice
in randomized allocation of patients to treatment arms is for a statistician metaphorically to produce in advance a sequence
of decisions in envelopes, which is a sufficiently low-technology practice to work well even in the most rudimentary of
clinical contexts. Similarly, trials units generally already have well-established processes for exporting clinical data into
statistical packages for subsequent analysis, and there was no obvious gain from integrating this aspect with the rest of
the model-driven chain. Objections are also partly due to politics, especially an investment – individual or institutional – in
more manual development techniques.

5.4. Applicability

It has been gratifying to see that the ideaswe have developed aremuchmorewidely applicable than originally envisaged.
Of course, we expected that software engineering efforts related to breast cancer ought to be readily translatable to other
types of cancer, andwehoped that its area of applicabilitywould also embrace other diseases; our results in vaccinology (and
also in rheumatoid arthritis, in an exploratory collaborationwith theUSVeterans’ HealthAdministrationCooperative Studies
Program) have vindicated that hope. But we have been pleasantly surprised to learn that essentially the same approach is
also highly relevant in the field of electronic government. This too turns out to be largely a problem of data integration:
the former UK Prime Minister Tony Blair coined the term ‘joined-up government’ as a vision for how different government
departments ought to – but generally do not at present – interact [45]. Moreover, electronic governance is also a domain in
whichmodel-driven generation of software artefacts would be extremely helpful: accountability of public servants requires
government information systems to be transparent, and themonopoly typically held by the incumbent government requires
the systems to be trustworthy. Our ideas in this area are still under development, but we have some preliminary results
[46–48], and we are discussing further progress with the UK Public Sector Object Model group and with the Scottish
Government.
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Broadly speaking, we expect the approach to be applicable to any semantically rich domain in which there is: a relatively
stable metamodel of the domain; a ‘design phase’ consisting of instantiating the metamodel to yield a model of a particular
instance, which can be used to configure generic software tools; and an ‘execution phase’ in which entities conforming
to the model are created. We have been using the term ‘semantic frameworks’ to describe the approach when applied
outside cancer clinical informatics [46]. For example, one could use the approach for a generic conference management
system. The basis is a metamodel of academic conferences. The conference chair ‘designs’ the particular conference by
instantiating the metamodel, specifying properties such as whether there is an author response period, whether reviews
are double-blinded, how many reviewers each paper should have, and so on. ‘Execution’ consists of creating entities such
as ‘submissions’ and ‘reviews’ that conform to conference-specific aspects of the model. The reader can doubtless think of
many similar configurable information-gathering exercises.

5.5. Future work

One aspect of ongoing work is to extend the scope of the metamodel to cover also the temporal aspects of a clinical
trial. Although the trial protocol provides structured specifications of static aspects, in terms of common data elements, the
dynamic aspects – when interventions should occur – are described only in free text (see the ‘meaning’ fields in Fig. 5).
These too could be specified in a structured format in the protocol, in a workflowmodelling notation such as BPEL or BPMN,
and then used to generate scheduling tools for trial execution. We have conducted some preliminary studies on using such
workflow notations to specify and check trial safety properties such as drug interactions [49,50], but have not yet integrated
this work with the rest of the CancerGrid toolchain. The biggest challenge will be to allow the trial designer to describe the
temporal aspects of the trial in sufficient detail, without degenerating into a full-blown programming exercise; we hope
that workflow patterns [51] and property specification patterns [52] will be helpful in this regard. But we are conscious that
even if this can be made to work smoothly from a technical perspective, the human and organizational perspectives may
still throw up obstacles to its adoption.
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