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Abstract: Surface Plasmon Resonance (SPR) is a powerful technique to study the kinetics
of biomolecules undergoing biorecognition processes, particularly suited for protein-protein
interactions of biomedical interest. The potentiality of SPR was exploited to sense the interactions
occurring within the network of the tumor suppressor p53, which is crucial for maintaining genome
integrity and whose function is inactivated, mainly by down regulation or by mutation, in the majority
of human tumors. This study includes p53 down-regulators, p53 mutants and also the p53 family
members, p63 and p73, which could vicariate p53 protective function. Furthermore, the application
of SPR was extended to sense the interaction of p53 with anti-cancer drugs, which might restore p53
function. An extended review of previous published work and unpublished kinetic data is provided,
dealing with the interaction between the p53 family members, or their mutants and two anticancer
molecules, Azurin and its cell-penetrating peptide, p28. All the kinetic results are discussed in
connection with those obtained by a complementary approach operating at the single molecule level,
namely Atomic Force Spectroscopy and the related literature data. The overview of the SPR kinetic
results may significantly contribute to a deeper understanding of the interactions within p53 network,
also in the perspective of designing suitable anticancer drugs.

Keywords: Surface Plasmon Resonance (SPR); protein-protein interaction; p53 network; p63; p73;
p53 mutants; Azurin; p28; Atomic Force Spectroscopy (AFS)

1. Introduction

Since the early 1990s, Surface Plasmon Resonance (SPR) has proven to be one of the most powerful
biosensing technique to investigate the recognition processes between biological partners forming
functional complexes [1]. The peculiar ability of SPR to determine the kinetic parameters upon
physical binding between biomolecules, in real time and without labelling, has made this technique
particularly suited for studying interactions in the biomedical field [2]. Interestingly, the kinetic
results of protein-protein interactions could provide useful insights into the molecular mechanism
at the basis of their biological function. Indeed, SPR has mainly been used to study binding kinetics
between antibody-antigen, ligand-receptor and enzyme-substrate, whose interactions are responsible
for biomolecular recognition and signaling [3]. In addition, SPR has demonstrated to be a remarkable
tool for drug discovery and for diagnostics purposes [4,5]. On the other hand, SPR is able to investigate
multiple interactions, such as ternary complexes [6], being useful especially for the study of complex
networks, in which many proteins could interact in a combined, synergistic or competitive way.
Such a feature is of particular interest for pharmaceutical research looking for drugs antagonizing
a specific biological interaction. Indeed, SPR has been exploited to identify the target residues of
protein-drug interaction, studying protein domains and/or the effect of mutations and even to measure
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the drug potency by determining the half-maximal inhibitory concentration [7]. In this connection,
the study of protein-protein and protein-drug interactions are at the cutting edge of cancer research.
The core of this research is represented by the tumor suppressor p53, which is a powerful transcription
factor finely tuned by a complex regulatory network, with a pivotal role in prevention of cancer
development and in maintaining genome integrity. In almost all human cancers, p53 function is
inactivated mainly by mutations and/or down-regulation; the latter being driven essentially by
ubiquitin ligases such as Mouse double minute 2 (MDM2) and Constitutive Photomorphogenic Protein
1 (COP1) [8]. In this context, SPR potentialities to sense interactions within the p53 network has been
exploited by many authors, with a particular attention to its down-regulators and also to p53 family
members, p63 and p73, which could vicariate p53 function [9–25]. Interestingly, SPR has been also
used to search for drugs aimed at protecting the p53 oncosuppressive function, to characterize their
binding kinetics and to gain knowledge on their anticancer mechanism [6,26–37].

Here, we discuss our previous published SPR work dealing with selected protein-protein
interactions of p53 or its family members, p63 and p73, with p53 mutants relevant in cancer or
with p53 down-regulators. Furthermore, some unpublished results on the binding kinetics of
two well-known anticancer molecules, Azurin and its cell-penetrating peptide, p28, with the p53
family members, p53 mutants or some of their domains are provided. At first, the experimental
design, including immobilization procedures, kinetic strategies, SPR data and their analysis, is
described. The corresponding results are both compared to those obtained by using an emerging
biosensing nanotechnological approach, namely Atomic Force Spectroscopy (AFS), being able to
measure the unbinding interaction force between biomolecular partners at the level of single molecular
complex [38–40] and discussed in connection with the related literature data.

2. SPR Principles, Methods and Analysis

2.1. SPR Principles

SPR-based instruments use an optical method to measure a change in the refractive index of
the medium in close vicinity (within ~300 nm) of a metal surface. In order to detect an interaction
between two molecules, one molecule, the ligand, is immobilized onto the sensor surface, while
its binding partner, the analyte, is injected in a buffer solution. As the analyte binds to the ligand,
the accumulation of molecules on the surface results in an increase of the refractive index measured
by the SPR instrument as a shift in the SPR angle (Resonance angle, ◦) or quantified in Resonance
Units (RU) in Biacore systems (Biacore AB, GE Healthcare, Little Chalfont, UK) (with 1 RU being
equivalent to a shift of 10−4 degrees) [41]. This change in the refractive index is measured in real
time and plotted as response versus time, obtaining the sensorgram. Commercial instruments are
equipped with two main liquid handling systems: cuvettes (e.g., SPR Autolab Esprit, Eco Chemie,
Utrecht, The Netherlands) or flow cells (e.g., Biacore systems). The former system, which offers the
possibility to incubate the analyte over the ligand for long time, can be useful to study slow interactions
or even ternary complexes. The main drawback of the cuvette systems is that the open configuration
can result in less controlled sample conditions, allowing uncontrolled evaporation of the sample
and increase in salt concentration, than the flow cell systems. On the other hand, these systems are
characterized by carefully defined experimental conditions, then, providing more accurate kinetic
parameters. However, in the latter case the contact between analyte and ligand is limited by both the
injection volume and the flow rate [42].

2.2. Immobilization Strategies

The immobilization of a protein ligand over a sensor surface is based on two main strategies;
one involving a direct binding of the ligand to the surface by covalent coupling, the other using
an indirect immobilization through the high affinity capture of the ligand by a covalently coupled
molecule. There are three main types of covalent coupling chemistry, using the amine group of lysines,
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the thiol group of cysteines or the aldehyde group of carbohydrates, to covalently bind proteins to
sensor chip surfaces exposing free carboxymethyl groups, such as CM-series chips (GE Healthcare).
The most used chemistry is the amine coupling which consists of the activation of the carboxymethyl
groups by N-ethyl-N-(3-diethylaminopropyl) carbodiimide (EDC) and N-hydroxyl-succinimide
(NHS) to give reactive succinimide esters, which spontaneously react with protein amines to form
covalent links. An alternative strategy, using bare gold SPR sensor disks, involves the gold surface
functionalization with cysteamine and glutaraldehyde, prior to the covalent binding of proteins
through amine coupling. These direct immobilization approaches don’t need any ligand modification
but cause the immobilization of the ligand in different orientations. Some of these orientations may
have a negative effect by decreasing or even abrogating the ligand ability to bind to the analyte.
In addition, an efficient ligand regeneration could be difficult to be achieved. On the other hand,
in the indirect immobilization strategy, the ligand needs to have a suitable binding site or a tag
allowing it to be captured with a high specificity and to be effectively dissociated by regeneration
procedures. The most used strategies involve antibody capture of tags, such as GST (e.g., GST Capture
kit, GE Healthcare), usually linked to the N-terminus of recombinant proteins. This strategy has
important advantages since proteins are rarely inactivated by indirect coupling and all the molecules
are immobilized in a known and well determined orientation on the surface. In addition, by using
appropriate buffers, the captured ligand-analyte bond can be selectively dissociated, thereby enabling
the surface to be re-used. In any case, a control surface should be generated, being as similar as possible
to the ligand surface, to measure non-specific binding and to record the background response.

2.3. Kinetic Experiments and Data Analysis

The classical method of measuring binding constants by SPR involves testing several analyte
concentrations over the same ligand surface and regenerating the surface between each analyte injection
cycle; this strategy is defined as Multi-Cycle Kinetics (MCK). It can also be adapted to study the effect of
inhibitors over an interaction, while its main drawback is the difficulty to regenerate the ligand without
affecting the ability to bind the analyte in the successive injection cycle. An alternative approach,
called Single-Cycle Kinetics (SCK), consists in sequential injections of increasing concentrations of the
analyte over a functionalized sensor chip surface, without regeneration steps between each sample
injection [43]. This method can be more efficient than the MCK and allows to fully characterize analyte
binding to ligand surfaces that are difficult to be regenerated.

To extract the kinetic parameters, the SPR data of protein-protein interaction are usually analyzed
in the framework of the Langmuir 1:1 binding model, which assumes a simple reversible bimolecular
reaction between the ligand and the analyte [44,45]. The model is modified to take into account for
the mass transport effect [46] by assuming that the analyte is driven towards the sensor chip surface
(Asurface) or back again to the bulk solution (Abulk) with the same mass transfer rate constant (kt).
When the analyte reaches the sensor chip surface, it binds to the ligand resulting in the formation of the
ligand-analyte complex (LA), characterized by the association rate constants (kon) and the dissociation
rate constants (koff):

Abulk
Kt
�
Kt

Asur f ace + L
Kon
�
Kon

LA (1)

Accordingly, the variation of Asurface, L and LA concentrations with time can be described by the
following set of differential equations [47]:
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d[Asur f ace]
dt = kt

(
[Abulk]−

[
Asur f ace

])
−
(

kon[L]
[

Asur f ace

]
− ko f f [LA]

)
d[L]
dt = −(kon[L]

[
Asur f ace

]
− ko f f [LA])

d[LA]
dt (kon[L]

[
Asur f ace

]
− ko f f [LA])

(2)

where [Abulk] is the analyte concentration in bulk solution, [Asurface] is the analyte concentration at the
sensor chip surface, [L] is the ligand concentration and [LA] is the ligand-analyte complex concentration.
By fitting the sensorgram according to a non-linear least square analysis and numerical integration
of Equations (2) through the BiaEvaluation software or other program (e.g., CLAMP software [48]),
the kinetic parameters kon and koff can be determined, then the equilibrium dissociation constant,
KD, (KD = koff/kon) can be calculated.

On the other hand, the KD can be also derived by plotting the response at equilibrium (Req) versus
the analyte concentration [Analyte] and then fitted as a Langmuir isotherm [44,45]:

Req =
[Analyte]Rmax

KD + [Analyte]
+ RI (3)

where Rmax is the analyte binding capacity and RI is the bulk refractive index contribution of the
sample, which is assumed to be the same for all the injections and used as the Response-axis offset.

3. Kinetics of Protein—Protein Interactions within the p53 Network by SPR

3.1. The Interaction between p53 and its Main Down-Regulator, MDM2

The interaction of the tumor suppressor p53 with MDM2, the major E3 ubiquitin ligase driving p53
to proteasome for degradation, is of outstanding interest and this interaction is considered as one of the
main targets for anticancer drug design aimed at impairing p53 down-regulation [49]. To characterize
the kinetic details of such an important interaction, the formation of the MDM2-p53 complex was
studied by using SPR [22]. The Autolab Esprit instrument was used to perform a MCK with MDM2
analyte over a sensor disk functionalized with cysteamine and glutaraldehyde to covalently bind the
p53 ligand through its exposed lysines. Figure 1 shows SPR sensorgrams obtained from the injection
of MDM2 protein, at six different concentrations (ranging from 0.1 to 2 µM), on the sensor disks
covered by p53. The SPR signal, as a function of time, provides the binding kinetic characterization of
the complex. Upon MDM2 injection, the observed time dependent signal increases up to a plateau
as due to the MDM2-p53 association; after removal of the MDM2 solution and subsequent buffer
injection, the decreasing profile reflects the kinetics of the MDM2-p53 dissociation. A koff of about
1 s−1, with a corresponding lifetime (τ = 1/koff) in the order of 1 s and a KD of about 10−7 M were
obtained, according to the 1:1 binding model (CLAMP software) (Figure 1A, Table 1). Interestingly,
these kinetic results were further confirmed by complementary experiments performed at the single
molecule level by using AFS providing a koff of about 1.5 s−1 [50]. Moreover, similar KD values were
obtained by other authors for the interaction between the N-terminal domain (NTD) of MDM2 and
the full length p53 or the NTD of p53, witnessing that both their NTDs are mainly responsible for
the MDM2-p53 interaction [51,52]. Such information on the kinetics of the MDM2-p53 interaction
could help to understand the molecular mechanism underlying the inhibitory function exerted by
MDM2, also in connection with the kinetics of other competitive or synergistic interactions within the
p53 network.
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Figure 1. Sensorgrams (solid curves) of the Multi-Cycle Kinetics performed by injecting over the 
p53-functionalized substrate increasing concentrations of MDM2. Dashed black curves: the best fits 
of experimental data with a 1:1 binding model (CLAMP software). Insets: schematic representation 
of the interaction geometry. Adapted from [22]. 

Table 1. Kinetic parameters of the protein-protein interactions within the p53 network revised in this 
work.  

Protein-Protein Interaction kon (M−1 s−1) koff (s−1) KD (M) τ (s) Ref.
MDM2/p53 (0.8 ± 0.3) × 106 (2.1 ± 0.2) (0.4 ± 0.1) × 10−6 (0.5 ± 0.1) [22] 

MDM2/MDM4 (4.3 ± 0.3) × 103 (1.7 ± 0.7) × 10−3 (3.9 ± 0.1) × 10−7 (6 ± 2) × 102 [23], unp 
p53R175H/p53 (1.28 ± 0.04) × 104 (4.6 ± 0.4) × 10−5 (3.6 ± 0.3) × 10−9 (2.17 ± 0.02) × 104 [24] 
p53R175H/p63 (1.52 ± 0.04) × 104 (5.3 ± 0.4) × 10−5 (3.5 ± 0.3) × 10−9 (1.89 ± 0.01) × 104 [24] 
p53R175H/p73 (6.4 ± 0.5) × 103 (3.1 ± 1.8) × 10−3 (4.9 ± 0.6) × 10−7 (3.2 ± 1.9) × 102 [25] 

Az/p53 (8.2 ± 0.5) × 104 (9.4 ± 0.7) × 10−2 (1.2 ± 0.1) × 10−6 (1.0 ± 0.1) × 10 [22] 
Az/(p53-MDM2) (6.8 ± 0.5) × 104 (9.0 ± 0.3) × 10−2 (1.3 ± 0.1) × 10−6 (1.0 ± 0.1) × 10 [22] 
MDM2/(p53-Az) (5.0 ± 0.3) × 105 (0.6 ± 0.2) (1.2 ± 0.4) × 10−6 (1.60 ± 0.02) [22] 

p28/p53 (2.4 ± 0.4) × 102 (3.0 ± 0.1) × 10−3 (1.2 ± 0.1) × 10−5 (3.3 ± 0.3) × 102 unp. 
p28/CTDp53 - - N.I. - unp. 
p28/DBDp53 (2.4 ± 0.5) × 102 (2.0 ± 0.1) × 10−5 (8.8 ± 1.9) × 10−8 (5.0 ± 0.3) × 104 [37], unp. 

p28/DBDp53-K164E - - 7.3 × 10−8 - [37] 
p28/DBDp53-R273H - - N.I. - [37] 

p28/DBDp53-P223L/V274F - - 2.4 × 10−4 - [37] 
Az/DBDp63 (4.6 ± 0.5) × 102 (4.2 ± 0.3) × 10−4 (8.2 ± 0.3) × 10−6 (2.4 ± 0.1) × 103 unp. 
p28/DBDp63 (9.2 ± 0.7) (3.7 ± 0.3) × 10−5 (4.2 ± 0.4) × 10−6 (2.7 ± 0.2) × 104 unp. 

p28/p73 (9.3 ± 0.5) × 104 (1.4 ± 0.1) × 10−3 (1.5 ± 0.4) × 10−8 (7.1 ± 0.5) × 102 unp. 

Abbreviations: Azurin (Az), DNA binding domain (DBD), association rate constant (kon), dissociation rate 
constant (koff), equilibrium dissociation constant (KD), lifetime (τ), no interaction (N.I.); unpublished (unp.), not 
determined (-). 

3.2. The Interaction between MDM2 and MDM4 

The interaction of MDM2 with its homolog MDM4, forming heterodimers, plays a pivotal role 
in the p53 network; primarily by controlling p53 abundance through ubiquitin-proteasome pathway 
and also because of its involvement in the regulation of p53 transcriptional activity and p53-induced 
apoptosis [53–55]. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic 
restoration of p53 function [56]. To this aim, a deeper understanding of the molecular mechanisms 
underlying the heterodimerization is required. In this context, the kinetics of the MDM2-MDM4 
interaction was characterized by SPR [23]. An immunocapture strategy was exploited to immobilize 
N-terminal GST-tagged MDM4 by using the Anti-GST Antibody (right inset of Figure 2). This 
immobilization strategy allowed to orient MDM4 in a convenient way, by exposing the C-terminal 
RING domain, which is involved in the interaction with MDM2 [57,58]. The BiacoreX100 system was 
exploited to perform a SCK in which the MDM2 analyte and the buffer were alternately injected into 
the flow cell, where the MDM4 ligand was previously immobilized. The sensorgram (Figure 2) 

Figure 1. Sensorgrams (solid curves) of the Multi-Cycle Kinetics performed by injecting over the
p53-functionalized substrate increasing concentrations of MDM2. Dashed black curves: the best fits of
experimental data with a 1:1 binding model (CLAMP software). Insets: schematic representation of the
interaction geometry. Adapted from [22].

Table 1. Kinetic parameters of the protein-protein interactions within the p53 network revised in
this work.

Protein-Protein Interaction kon (M−1 s−1) koff (s−1) KD (M) τ (s) Ref.

MDM2/p53 (0.8 ± 0.3) × 106 (2.1 ± 0.2) (0.4 ± 0.1) × 10−6 (0.5 ± 0.1) [22]
MDM2/MDM4 (4.3 ± 0.3) × 103 (1.7 ± 0.7) × 10−3 (3.9 ± 0.1) × 10−7 (6 ± 2) × 102 [23], unp
p53R175H/p53 (1.28 ± 0.04) × 104 (4.6 ± 0.4) × 10−5 (3.6 ± 0.3) × 10−9 (2.17 ± 0.02) × 104 [24]
p53R175H/p63 (1.52 ± 0.04) × 104 (5.3 ± 0.4) × 10−5 (3.5 ± 0.3) × 10−9 (1.89 ± 0.01) × 104 [24]
p53R175H/p73 (6.4 ± 0.5) × 103 (3.1 ± 1.8) × 10−3 (4.9 ± 0.6) × 10−7 (3.2 ± 1.9) × 102 [25]

Az/p53 (8.2 ± 0.5) × 104 (9.4 ± 0.7) × 10−2 (1.2 ± 0.1) × 10−6 (1.0 ± 0.1) × 10 [22]
Az/(p53-MDM2) (6.8 ± 0.5) × 104 (9.0 ± 0.3) × 10−2 (1.3 ± 0.1) × 10−6 (1.0 ± 0.1) × 10 [22]
MDM2/(p53-Az) (5.0 ± 0.3) × 105 (0.6 ± 0.2) (1.2 ± 0.4) × 10−6 (1.60 ± 0.02) [22]

p28/p53 (2.4 ± 0.4) × 102 (3.0 ± 0.1) × 10−3 (1.2 ± 0.1) × 10−5 (3.3 ± 0.3) × 102 unp.
p28/CTDp53 - - N.I. - unp.
p28/DBDp53 (2.4 ± 0.5) × 102 (2.0 ± 0.1) × 10−5 (8.8 ± 1.9) × 10−8 (5.0 ± 0.3) × 104 [37], unp.

p28/DBDp53-K164E - - 7.3 × 10−8 - [37]
p28/DBDp53-R273H - - N.I. - [37]

p28/DBDp53-P223L/V274F - - 2.4 × 10−4 - [37]
Az/DBDp63 (4.6 ± 0.5) × 102 (4.2 ± 0.3) × 10−4 (8.2 ± 0.3) × 10−6 (2.4 ± 0.1) × 103 unp.
p28/DBDp63 (9.2 ± 0.7) (3.7 ± 0.3) × 10−5 (4.2 ± 0.4) × 10−6 (2.7 ± 0.2) × 104 unp.

p28/p73 (9.3 ± 0.5) × 104 (1.4 ± 0.1) × 10−3 (1.5 ± 0.4) × 10−8 (7.1 ± 0.5) × 102 unp.

Abbreviations: Azurin (Az), DNA binding domain (DBD), association rate constant (kon), dissociation rate constant
(koff), equilibrium dissociation constant (KD), lifetime (τ), no interaction (N.I.); unpublished (unp.), not determined (-).

3.2. The Interaction between MDM2 and MDM4

The interaction of MDM2 with its homolog MDM4, forming heterodimers, plays a pivotal
role in the p53 network; primarily by controlling p53 abundance through ubiquitin-proteasome
pathway and also because of its involvement in the regulation of p53 transcriptional activity and
p53-induced apoptosis [53–55]. Therefore, the MDM2-MDM4 complex could be a target for promising
therapeutic restoration of p53 function [56]. To this aim, a deeper understanding of the molecular
mechanisms underlying the heterodimerization is required. In this context, the kinetics of the
MDM2-MDM4 interaction was characterized by SPR [23]. An immunocapture strategy was exploited
to immobilize N-terminal GST-tagged MDM4 by using the Anti-GST Antibody (right inset of Figure 2).
This immobilization strategy allowed to orient MDM4 in a convenient way, by exposing the C-terminal
RING domain, which is involved in the interaction with MDM2 [57,58]. The BiacoreX100 system
was exploited to perform a SCK in which the MDM2 analyte and the buffer were alternately injected
into the flow cell, where the MDM4 ligand was previously immobilized. The sensorgram (Figure 2)
shows the SPR response (RU) as a function of time obtained by the successive injection of five
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increasing concentrations of MDM2. During the first injection, the signal increases reaching a steady
state before the end of the injection. Subsequently, the MDM2 rapidly and completely dissociates
as the signal strength decreases, down to zero. The same trend is also observed for the successive
injections of increasing concentration of MDM2. To extract information on the affinity between MDM2
and MDM4, the SPR data were analyzed in the framework of the 1:1 binding model by using the
BiaEvaluation software (version 2.1, Biacore AB, GE Healthcare, Little Chalfont, UK) and a koff
of about 10−3 s−1, a corresponding lifetime in the order of minutes and a KD of about 10−7 M,
were obtained (Figure 2, Table 1). A slightly higher KD value (about 10−6 M) was found by fitting the
response at equilibrium versus the MDM2 concentration with the Langmuir isotherm (Equation (3))
(left inset of Figure 2). This KD value was further confirmed at the single molecule level by AFS which,
instead, provided a higher koff (about 10−2 s−1), corresponding to a slightly shorter lifetime [23].
Such a difference between the results from in bulk experiments by SPR and at the single molecule level
by AFS, could be attributed to the peculiar features of the two experimental techniques and also to the
different immobilization strategies [39].
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Figure 2. Sensorgram (black curve) of the Single-Cycle Kinetics performed by injecting of five increasing
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Interestingly, the lifetime of MDM2-MDM4 interaction is much longer than that of the p53-MDM2
complex (Table 1), with this indicating that the heterodimer is available for several cycles of association
and dissociation with p53 before the displacement of the MDM2-MDM4 complex occurs. The longer
lifetime of the MDM2-MDM4 complex, with respect to that of MDM2-p53, could be consistent with
the efficacy of the heterodimer in the p53 down-regulation. These new insights into the kinetics of the
MDM2-MDM4 complex may contribute to a better understanding of the ternary complex formed by the
MDM2-MDM4 heterodimer and p53 and, more importantly, could be of significant help in designing
specific antagonists able to prevent the formation of the MDM2-MDM4 complex, thus protecting p53
oncosuppressive function.

3.3. The Interaction of p53 Family Members with the Oncogenic Mutant p53R175H

In case of p53 inactivation, other members of p53 family, namely p63 and p73, which share high
structural homology with p53, are able to vicariate the oncosuppressive function of p53 by regulating
cell proliferation, differentiation and apoptosis [59,60]. Unfortunately, some mutants of p53, such as
p53R175H which is frequently found in many tumors, such as colorectal and breast cancers [61],
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inhibit the anti-tumor function of both p63 and p73 [62–66]. Accordingly, the elucidation of the binding
kinetics of the complexes formed by p53R175H and p53 family members, might contribute to the
design of novel anticancer drugs which could antagonize p53R175H and make p63 or p73 available for
anti-tumor effects. Furthermore, the oncogenic mutant p53R175H is able to impair the wild type p53
tumor suppressive function even when this is still present [67], although the mechanism underlying
such a dominant negative effect is still highly debated [66,68–70].

On such a ground, the kinetics of p53R175H-p73, p53R175H-p63 and p53R175H-p53 complexes
was studied by SPR [24,25]. In all the cases, a SCK was performed by using the BiacoreX100. Increasing
concentrations of p53R175H analyte were injected over a substrate functionalized with p73 by amine
coupling or with GST-tagged p63 or p53 by immunocapture, used as ligand. Sensorgrams witnessed
the formation of specific complexes between p53R175H and all the p53 family members; a fitting
of these data with the 1:1 binding model (BiaEvaluation software) provided the kinetic parameters
(Table 1). In particular, the p53R175H-p63 complex, characterized by a KD value in the order of 10−9 M
and a koff value of about 10−5 s−1, is stronger than the complex formed by the same mutant with p73,
whose KD value is in the order of 10−7 M and koff value is of about 10−3 s−1. Indeed, these differences
could be traced back to the presence of a specific aggregating peptide identified in the p63 sequence [68],
which might drive the stronger interaction with p53R175H.

Notably, the p53R175H-p53 complex is characterized by high specificity (koff ≈ 10−5 s−1) and
high affinity (KD ≈ 10−9 M), similarly to what found for the p53R175H-p63 complex (Table 1). Indeed,
this good agreement could indicate that the molecular mechanism underlying the formation of both
p53R175H-p53 and p53R175H-p63 complexes is similar [66]. All these kinetics results were further
confirmed by AFS experiments indicating a strong and specific interaction of the mutant p53R175H
with all the p53 family members (koff ≈ 10−5 s−1), also at single molecule level [24,25]. The only
exception is the koff value of the p53R175H-p73 complex, found by AFS, which is significantly lower
respect to that obtained by SPR but more similar to those of the other p53 family-p53R175H complexes.
Interestingly, by comparing the kinetic parameters of the p53R175H-p53 complex with those reported
for the p53-p53 homodimer interaction [71], crucial for the oncosuppressive function of p53 in vivo [72],
we note a comparable high affinity. However, the dissociation rate of the homodimer is much faster
than that of the p53R175H-p53 complex. In this context, the observed p53R175H-p53 interaction
could antagonize the homodimer formation, especially when high levels of p53R175H accumulates in
cancer cells.

Collectively, the strong interaction of the mutant p53R175H with all the p53 family members could
trigger the sequestering of the p53 family members. This may lead to the dominant negative effect
shown by this mutant, which finally causes the inhibition of the pro-apoptotic transactivation function
and loss of the p53 family protective function; with these effects being connected with oncogenic
outcomes (Figure 3).
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Figure 3. Schematic representation of the p53 family function (A) and its inactivation after their binding
with the oncogenic mutant p53R175H (B). The active p53 family proteins drives transactivation and
finally apoptosis of damaged or aberrantly proliferating cells. Binding of p53R175H with p53 family
inhibits the pro-apoptotic transactivation with loss of the p53 family tumor suppressive function.
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3.4. The Interaction of p53 with the Anticancer Molecule Azurin and the Effect on the p53-MDM2 Binding

The bacterial blue copper protein Azurin plays a prominent anticancer role by entering cancer cells
and inducing their apoptotic death [73]. Interestingly, it has been demonstrated that this pro-apoptotic
action of Azurin is concomitant with the formation of a complex with p53, thereby leading to
both its stabilization and intracellular level increase [74]. Taking in mind that further biophysical
studies may assist the design of novel Azurin-based cancer treatments, the kinetic parameters of
Azurin-p53 interaction were investigated by SPR. In particular, the same strategy described above for
the MDM2-p53 complex was used; the p53 ligand was covalently immobilized by amine coupling over
a functionalized sensor disk, then a MCK with the Azurin as analyte was performed by using the SPR
Autolab Esprit. The SPR sensorgrams, shown in Figure 4A, were obtained by injecting Azurin at seven
different concentrations, ranging from 0.25 to 4 µM, onto the p53-functionalized substrate. By fitting
the sensorgrams with the 1:1 binding model (CLAMP software), a koff of about 10−1 s−1 and a KD
of about 10−6 M were found (Table 1). These binding parameters are consistent with the formation
of a specific Azurin-p53 complex, with the koff value being in good agreement with that obtained by
AFS for the same complex at the single molecule level [75]. In addition, the N terminal domain (NTD)
of p53 has been reported to maintain a similar ability to bind Azurin [76]. Interestingly, the dissociation
constant of the Azurin-p53 complex results to be only threefold lower than that of the MDM2-p53
complex (Table 1).

Furthermore, SPR analysis of the Azurin-p53-MDM2 ternary interaction, whose occurrence has
been proposed by AFS experiments, was performed [50]. Indeed, aiming at extracting the relevant
kinetic parameters and at ascertaining if the observed Azurin-p53 specific interaction could interfere
with the binding kinetics of the MDM2-p53 complex, the binding kinetics of both Azurin with the
MDM2-p53 complex and of MDM2 with the Azurin-p53 complex was investigated. For the first
binding configuration, p53-functionalized substrate was treated with an excess of MDM2 solution until
the binding capacity of p53 for MDM2 resulted totally reduced. Then, the Azurin solution was injected
on the MDM2-p53 complex immobilized on the SPR sensor disk to analyze the interaction kinetics.
The sensorgrams, shown in Figure 4B, were obtained by injecting six different concentration of Azurin;
the extracted kinetic rate constants and equilibrium dissociation constant are almost equivalent to those
obtained for the Azurin-p53 binary complex (Table 1). These results indicate that Azurin and MDM2
do not compete for the same binding site within p53 but they are involved in a ternary interaction
(Azurin-p53-MDM2), confirming previous observations at the single molecule level [50]. The same
strategy was used to investigate the ability of MDM2 to bind to the Azurin-p53 complex (Figure 4C).

By comparing with the MDM2-p53 binary interaction, we found that Azurin affects the interaction
of MDM2 with p53 by reducing of more than four times the corresponding association rate; whereas
the corresponding koff value is practically unchanged and, consequently, the resulting KD value is
increased (Table 1). In other words, the SPR results indicate that the specific binding of Azurin to p53
induces a lowering of the association kinetics and binding affinity of the MDM2-p53 complex, without
obstructing the MDM2 binding site on p53. In this connection, Azurin can bind to the N-terminal
domain (NTD) of p53 [73,75,77] but not to the transactivation domain (TAD) of p53 [76], where the
interaction with MDM2 occurs [78,79] (Figure 5). In addition, several experimental and computational
studies showed a direct contact of Azurin with the DNA binding domain of p53 (DBDp53) [73,80,81].
In any case, Azurin could somehow affect the MDM2-p53 recognition process without hindering
the accessibility of MDM2 to its binding pocket on p53 but inducing a weakening of the MDM2-p53
interaction through a non-competitive inhibition mechanism; this could be figured out as a long-range
binding regulation. Moreover, the Azurin-induced folding in p53, as evidenced by Circular Dichroism
(CD) measurements, suggests that Azurin could be able to stabilize p53 by allosteric inhibition of the
functional, regulative interaction between MDM2 and p53 [22]. This non-competitive modulation of
the p53 activity may represent an interesting p53-protective strategy to design anticancer drugs to treat
tumors in which p53 retains its wild-type structure and function and provides enlightening insights
into the mechanism underlying the observed anticancer action of Azurin.
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containing the transactivation domain (TAD), DNA binding domain (DBD) and C terminal domain 
(CTD), including the oligomerization domain (OD). The arrow indicates the known interacting 
domain of p53 with MDM2 and the interacting regions of p53 with Azurin are marked. 

Figure 4. Sensorgrams (solid curves) of the Multi-Cycle Kinetics performed by injecting over the
p53-functionalized substrate increasing concentrations of: (A) Azurin, (B) Azurin, after the substrate
saturation with MDM2, (C) MDM2, after the substrate saturation with Azurin. Dashed black curves:
the best fits of experimental data with a 1:1 binding model (CLAMP software). Insets: schematic
representation of the interaction geometry. Adapted from [22].

Sensors 2017, 17, 2680  9 of 18 

 

 
Figure 4. Sensorgrams (solid curves) of the Multi-Cycle Kinetics performed by injecting over the 
p53-functionalized substrate increasing concentrations of: (A) Azurin, (B) Azurin, after the substrate 
saturation with MDM2, (C) MDM2, after the substrate saturation with Azurin. Dashed black curves: 
the best fits of experimental data with a 1:1 binding model (CLAMP software). Insets: schematic 
representation of the interaction geometry. Adapted from [22]. 

 

Figure 5. Schematic representation of the full length p53 protein domains: N-terminal domain (NTD), 
containing the transactivation domain (TAD), DNA binding domain (DBD) and C terminal domain 
(CTD), including the oligomerization domain (OD). The arrow indicates the known interacting 
domain of p53 with MDM2 and the interacting regions of p53 with Azurin are marked. 

Figure 5. Schematic representation of the full length p53 protein domains: N-terminal domain (NTD),
containing the transactivation domain (TAD), DNA binding domain (DBD) and C terminal domain
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of p53 with MDM2 and the interacting regions of p53 with Azurin are marked.
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3.5. The Interaction of the Anticancer Drug p28 with p53

p28 is a cell-penetrating peptide derived from Azurin, which causes a post-translational increase
of p53 in cancer cells and is a promising drug [82]. Indeed, it passed Phase I clinical trial on adult solid
tumor and was found safe for children [83,84]. Interestingly, p28 directly binds p53, without altering
p53 overall conformation [85–87]. In this context, the molecular mechanism of p28 anticancer activity
is a remarkably interesting topic to understand the function and possibly to improve the anticancer
properties of such this drug. To this aim SPR experiments were performed to investigate the p28
binding to the full length p53 protein (p53) and to some of its domains, which could be responsible
for the interaction with p28 [37]. The GST Capture kit was exploited to immobilize the GST-tagged
p53 protein over a CM5 sensor chip surface and a SCK with the p28 analyte was performed by using
the Biacore X100 instrument. Figure 6 shows the sensorgram obtained by injecting five increasing
concentration of p28 over the p53-functionalized surface by using the method described in detail
in [37]. After each injection of p28, the response increases, then, after the buffer flows, it rapidly
decreases. Indeed, the response grows after the injection of higher concentrations of p28, indicating the
occurrence of a specific interaction between p28 and p53.
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interaction scheme.

By fitting the sensorgram with the 1:1 binding model (BiaEvaluation software), we found a koff of
about 10−3 s−1, a corresponding lifetime in the order of minutes and a KD of about 10−5 M (Figure 6,
Table 1), indicating the occurrence of a specific and quite strong interaction between p53 and p28.
This affinity is similar to that obtained for the p28-p53 complex, at the single molecule level, by AFS
(KD ≈ 10−5 M). At variance, slightly lower koff was found by SPR respect to AFS (koff ≈ 10−1 s −1) [87],
similarly to what found for the MDM2-MDM4 complex. By comparing these results with those
obtained for the Azurin-p53 complex, we found a few lower affinity and a significantly longer lifetime;
with this being an important feature for the anticancer activity of p28 respect to the whole Azurin
(Table 1).

Furthermore, since biological studies, as well as computational methods, indicated the DBD
as the interacting domain of p53 with p28 [85,87,88], the kinetics of the complex between p28 and
the DBDp53 was investigated by SPR [37]. The GST-tagged DBDp53 ligand was immobilized by
using the same capture strategy of the whole p53 protein; then, a SCK was performed by injecting
increasing concentrations of p28 analyte. The sensorgram, shown in [37], reveals the occurrence
of a specific interaction between p28 and DBDp53. By fitting this sensorgram with the 1:1 binding
model (BiaEvaluation software), a koff of about 10−5 s−1, a corresponding lifetime in the order of
hours and a KD of about 10−7 M (Table 1) were determined. These results qualitatively confirm the
binding properties detected by AFS, showing quite similar KD values but a lower koff respect to AFS
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(koff ≈ 10−2 s−1) [87]. Interestingly, the DBDp53 showed a higher affinity and a longer lifetime with
respect to the full length p53 protein (Table 1).

The same SPR approach was also used to study the interaction of p28 with the C-terminal domain
(CTD) of p53. However, in this case, no specific response was found, confirming that this domain
of p53 is not involved in p28 interaction, as previously shown by immunoprecipitation assays [85].
The interaction of p28 with the N-terminal domain of p53 was not tested since no interaction was
found by AFS [87].

Collectively, these kinetic results strengthen and complete previous findings on the p28-p53
complex, confirming that the interaction of p28 is confined to the DBD core domain through formation
of a high affinity complex. The occurrence of a strong complex between the DBDp53 and p28 suggests
that the p28 anticancer activity may be related to its ability to inhibit the binding of E3 ligase COP1 to
the DBD by reducing the proteasome degradation of p53 [85]. In this respect, SPR competitive assays
of COP1 over the DBDp53-p28 complex, performed by using a suited strategy, such as that described
above for MDM2 over the Azurin-p53 interaction, would provide significant insight into the anticancer
function of p28.

3.6. The Interaction of Mutants of DBDp53 with p28

The mutation of p53 occurs in half of human cancers and is mainly located in the DBD [61], which
is the binding site of p28, as discussed above. The DBD is not only involved in the control of the
p53 down-regulation but it is the domain necessary for the binding to DNA. Since mutations within
DBD are often connected with p53 loss of function and subsequent tumor proliferation, it could be
interesting to investigate the possibility that p28 could interact with mutated forms of DBD enhancing
apoptosis. In this connection, the ability of p28 to bind to naturally occurring DBD mutants was
investigated. In particular, the mutants K164E DBDp53, R273H DBDp53 and P223L/V274F DBDp53,
whose mutation sites are not overlapping the p28 binding sites, were used for SPR experiments [37]
(Figure 7A). The SCK approach (BiacoreX100) was used to study the interaction kinetics between
mutants DBDp53 immobilized on the SPR sensor chip surface and p28 in solution by using the same
strategy, above described for the p28-DBDp53 wild type. When increasing concentrations of p28 were
fluxed over the K164E DBDp53 or P223L/V274F DBDp53 functionalized surface, responses similar to
that of the p28-DBDp53 wild type were found. No increase in signal was observed when the p28 was
injected over the R273H DBDp53 functionalized surface (data not shown). These kinetic data were
analyzed in the framework of the 1:1 binding model (BiaEvaluation software). Accordingly, a KD value
of about 10−7 M was determined for the p28-K164E DBDp53 interaction, indicating a strong affinity
which is very close to that of the wild type one (Table 1). Indeed, the p28-P223L/V274F DBDp53
interaction, which is characterized by a KD ≈ 10−4 M, showed a lower affinity with respect to the
complex between the former mutant and the wild type DBDp53 (Table 1). Instead, no interaction
between p28 and the R273H DBDp53 was found (Figure 7B). These kinetic results were further
confirmed, at the single molecule level, by AFS and correlated to information on the secondary structure
of DBD mutants affecting p28 binding. Indeed, Raman spectroscopy pointed out that the affinity of
p28 with DBDp53 mutants is correlated with the β-sheet content [37]. Additionally, these results could
provide insights on how p28 plays an anticancer activity in patients with a variety of advanced tumors
presenting wild type or mutated p53, as evidenced in initial clinical trials [83,84].
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Figure 7. (A) DBDp53-28 docking model: in yellow, ribbon diagram of wild type DBDp53, mutated 
residues are indicated by arrows and highlighted in grey; in cyan, ribbon diagram of p28. Adapted 
from [85]. (B) Schematic representation of the binding abilities of p28 respect to the wild type 
DBDp53 (DBD) and the three mutant DBDs (K164E, R273H and P223L/V247F); in case of interaction, 
the KD value is indicated inside the arrow. 

3.7. The Interaction of p53 Family with Azurin and p28  

The structural similarity between p53 and its homologues p63 and p73, especially concerning 
their DBDs, suggests that anticancer molecules able to bind to p53 could also bind to either p63 or 
p73 and potentially enhance their tumor suppressive activity. In this context, the ability of Azurin to 
bind p63 was investigated by SPR measurements. In particular, a SCK (Biacore X100) was performed 
by injecting Azurin, in a concentration range of 5–50 µM, over a CM5 sensor chip surface 
functionalized with the DBD of p63 (DBDp63) by using the amine coupling strategy. The increase of 
the SPR response, as a function of the Azurin concentration, indicates a specific binding of Azurin 
with the DBDp63 (data not shown). The kinetic parameters of the Azurin-DBDp63 interaction, 
analyzed in the framework of the 1:1 binding model (Table 1) and also of the Langmuir isotherm (KD 
= (3.9 ± 0.8) × 10−5 M) were determined. In particular, the KD value of the Azurin-DBDp63 complex 
(≈10−5 M) indicates a quite strong biorecognition, being weaker than the Azurin-p53 complex (Table 
1). Since the DBDp63 shares high sequence homology with the DBDp53 and is able to bind to 
Azurin, its ability to bind to p28 was further investigated. A SCK (BiacoreX100) was performed by 
injecting 5 increasing concentrations of p28 (3–13 µM) over the p63DBD-immobilized surface, 
prepared as described above. The sensorgram (data not shown) indicated that p28 specifically binds 
to the DBDp63 according to the 1:1 binding model (BiaEvaluation software) their kinetic parameters 
were determined (Table 1). The p28-DBDp63 complex is characterized by a quite high affinity (KD ≈ 
10−6 M) and a very long lifetime in the order of hours. In addition, by fitting the SPR response with 
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Figure 7. (A) DBDp53-28 docking model: in yellow, ribbon diagram of wild type DBDp53, mutated
residues are indicated by arrows and highlighted in grey; in cyan, ribbon diagram of p28. Adapted
from [85]. (B) Schematic representation of the binding abilities of p28 respect to the wild type DBDp53
(DBD) and the three mutant DBDs (K164E, R273H and P223L/V247F); in case of interaction, the KD

value is indicated inside the arrow.

3.7. The Interaction of p53 Family with Azurin and p28

The structural similarity between p53 and its homologues p63 and p73, especially concerning
their DBDs, suggests that anticancer molecules able to bind to p53 could also bind to either p63 or p73
and potentially enhance their tumor suppressive activity. In this context, the ability of Azurin to bind
p63 was investigated by SPR measurements. In particular, a SCK (Biacore X100) was performed by
injecting Azurin, in a concentration range of 5–50 µM, over a CM5 sensor chip surface functionalized
with the DBD of p63 (DBDp63) by using the amine coupling strategy. The increase of the SPR response,
as a function of the Azurin concentration, indicates a specific binding of Azurin with the DBDp63
(data not shown). The kinetic parameters of the Azurin-DBDp63 interaction, analyzed in the framework
of the 1:1 binding model (Table 1) and also of the Langmuir isotherm (KD = (3.9 ± 0.8) × 10−5 M) were
determined. In particular, the KD value of the Azurin-DBDp63 complex (≈10−5 M) indicates a quite
strong biorecognition, being weaker than the Azurin-p53 complex (Table 1). Since the DBDp63
shares high sequence homology with the DBDp53 and is able to bind to Azurin, its ability to bind
to p28 was further investigated. A SCK (BiacoreX100) was performed by injecting 5 increasing
concentrations of p28 (3–13 µM) over the p63DBD-immobilized surface, prepared as described above.
The sensorgram (data not shown) indicated that p28 specifically binds to the DBDp63 according to
the 1:1 binding model (BiaEvaluation software) their kinetic parameters were determined (Table 1).
The p28-DBDp63 complex is characterized by a quite high affinity (KD ≈ 10−6 M) and a very long
lifetime in the order of hours. In addition, by fitting the SPR response with the Langmuir isotherm
(Equation (3)) (BiaEvaluation software), a similar KD value (KD = (7.2 ± 0.8) × 10−6 M) was found.
Furthermore, the resulting affinity is also close to that previously obtained at the single molecule level
by AFS (KD ≈ 10−6 M), while the lifetime of the p28-DBDp63 appears longer [89]. Such a difference
between the results of these two techniques was already shown for the MDM2-MDM4, the p28-p53 and
the p28-DBDp53 complexes. By comparing the kinetic results of the complex formed by DBDp63 with
p28 or with the Azurin, a few higher affinity and a longer lifetime with the p28 peptide were found
(Table 1). On the other hand, the p28-p63DBD complex is less stable than the cognate p28-DBDp53
complex. These kinetics results may have implications on the possible efficacy of such these anticancer
molecules over p63 function, opening new insights on their biological function. The longer lifetime of
the interaction of p63 with p28 respect to Azurin, also shown for p53, may be an important feature of
their anticancer activity.

To complete the study of p28 abilities to bind to the p53 family members, its interaction with
p73 was studied. By using the BiacoreX100 instrument, a SCK was performed by injecting increasing
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concentrations of p28 analyte (in the 3–12 µM range) over a CM5 sensor chip surface functionalized
with the p73 ligand by using the amine coupling chemistry. The sensorgram was fitted with the
1:1 binding model (BiaEvaluation software); the resulting kinetic parameters indicate a high affinity
(KD ≈ 10−8 M) and a lifetime in the order of minutes for the p28-p73 complex (Table 1). By comparing
these kinetic results with those obtained, at the single molecule level by AFS (KD ≈ 10−7 M) [89],
a comparable lifetime and a few higher affinity were found by SPR. Intriguingly, the p28-p73 complex
is characterized by higher affinity but a lower stability, than the p28-p53 complex.

Collectively, these novel SPR kinetic results confirm that p28 is able to form stable and high affinity
interactions with both p63 and p73. However, it is not clear if the specific binding of p28 to these
p53 family members could directly increase their expression by inhibiting the proteasome-mediated
degradation driven by the ubiquitin ligase COP1, as described for p53 [89]. Accordingly, it is worth
to investigate the possible interference of p28 with ubiquitin ligases, controlling the level of p63
and p73 and in particular with COP1, which is the target of p28 activity in protecting p53 from
proteasome-mediated degradation and whose role in p63 and p73 regulation is still unknown.

4. Conclusions and Perspectives

Applying appropriate immobilization strategies, different analyte injection sequences and suitable
models for data analysis, SPR has proven to be a versatile biosensing technique, which allows to
determine, in real time and without labelling, reliable and accurate equilibrium kinetic parameters
of protein-protein interactions of biomedical interest, including ternary complexes. The SPR results
may be supported by the complementary nanotechnological AFS technique, which is also able to
provide information on the binding kinetic parameters at the single molecule level. The overview
here presented (Figure 8) on the interaction binding kinetics involving p53, its main down-regulators,
p53 family members, p63 and p73, some oncogenic mutants and two anticancer drugs, may both
contribute to a deeper understanding of the p53 network features and provide useful insights for
anticancer drugs strategies.
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SPR sensing could be in perspective exploited to study both the interaction of p53 family members
with other inhibitors and the antagonizing effect of novel, or optimized, drugs, which target specific
interactions within the p53 network, aimed at restoring its oncosuppressive function.
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